skip to main content


Search for: All records

Award ID contains: 2035080

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Seismic tomography models indicate highly variable Earth structure beneath Antarctica with anomalously low shallow mantle viscosities below West Antarctica. An improved projection of the contribution of the Antarctic Ice Sheet to sea‐level change requires consideration of this complexity to precisely account for water expelled into the ocean from uplifting marine sectors. Here we build a high‐resolution 3‐D viscoelastic structure model based on recent inferences of seismic velocity heterogeneity below the continent. The model serves as input to a global‐scale sea‐level model that we use to investigate the influence of solid Earth deformation in Antarctica on future global mean sea‐level (GMSL) rise. Our calculations are based on a suite of ice mass projections generated with a range of climate forcings and suggest that water expulsion from the rebounding marine basins contributes 4%–16% and 7%–14% to the projected GMSL change at 2100 and 2500, respectively.

     
    more » « less
  2. Abstract

    Sea level rise (SLR) is a long‐lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate for the deep ocean and ice sheets. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process‐based models. However, risk‐averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientists and practitioners builds on a framework of discussing physical evidence to quantify high‐end global SLR for practitioners. The approach is complementary to the IPCC AR6 report and provides further physically plausible high‐end scenarios. High‐end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2°C in 2100 (RCP2.6/SSP1‐2.6) relative to pre‐industrial values our high‐end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for a (RCP8.5/SSP5‐8.5), we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long‐term benefits of mitigation. However, even a modest 2°C warming may cause multi‐meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high‐end assessments focused on instability mechanisms in Antarctica, while here we emphasize the importance of the timing of ice shelf collapse around Antarctica. This is highly uncertain due to low understanding of the driving processes. Hence both process understanding and emission scenario control high‐end SLR.

     
    more » « less
  3. Abstract

    Retreat or advance of an ice sheet perturbs the Earth's solid surface, rotational vector, and the gravitational field, which in turn feeds back onto the evolution of the ice sheet over a range of timescales. Throughout the last glacial cycle, ice sheets over the Northern Hemisphere have gone through multiple growth and retreat phases, but the dynamics during these phases are not well understood. In this study, we apply a coupled ice sheet‐glacial isostatic adjustment model to simulate the Northern Hemisphere Ice Sheets over the last glacial cycle. We focus on understanding the influence of solid Earth deformation and gravitational field perturbations associated with surface (ice and water) loading changes on the dynamics of terrestrial and marine‐based ice sheets during different phases of the glacial cycle. Our results show that solid Earth deformation enhances glaciation during growth phases and melting during retreat phases in terrestrial regions through ice‐elevation feedback, and gravitational field perturbations have a stabilizing influence on marine‐based ice sheets in regions such as Hudson Bay in North America and Barents and Kara Seas in Eurasia during retreat phases through sea‐level feedback. Our results also indicate that solid Earth deformation influences the relative sensitivity of the North American and Eurasian ice sheets to climate and thus the timing and magnitude of their fluctuations throughout the last glacial cycle.

     
    more » « less
  4. Uncertainty about sea-level rise is dominated by uncertainty about iceberg calving, mass loss from glaciers or ice sheets by fracturing. Review of the rapidly growing calving literature leads to a few overarching hypotheses. Almost all calving occurs near or just downglacier of a location where ice flows into an environment more favorable for calving, so the calving rate is controlled primarily by flow to the ice margin rather than by fracturing. Calving can be classified into five regimes, which tend to be persistent, predictable, and insensitive to small perturbations in flow velocity, ice characteristics, or environmental forcing; these regimes can be studied instrumentally. Sufficiently large perturbations may cause sometimes-rapid transitions between regimes or between calving and noncalving behavior, during which fracturing may control the rate of calving. Regime transitions underlie the largest uncertainties in sea-level rise projections, but with few, important exceptions, have not been observed instrumentally. This is especially true of the most important regime transitions for sea-level rise. Process-based models informed by studies of ongoing calving, and assimilation of deep-time paleoclimatic data, may help reduce uncertainties about regime transitions. Failure to include calving accurately in predictive models could lead to large underestimates of warming-induced sea-level rise. ▪ Iceberg calving, the breakage of ice from glaciers and ice sheets, affects sea level and many other environmental issues. ▪ Modern rates of iceberg calving usually are controlled by the rate of ice flow past restraining points, not by the brittle calving processes. ▪ Calving can be classified into five regimes, which are persistent, predictable, and insensitive to small perturbations. ▪ Transitions between calving regimes are especially important and with warming might cause faster sea-level rise than generally projected. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  5. Abstract In the Ross Sea sector of Antarctica, periodic large-scale marine ice-sheet fluctuations since the mid-Miocene are recorded by drill core and seismic data, revealing a dynamic ice-sheet response to past increases in temperature and atmospheric CO2. In the adjacent, predominantly ice-free McMurdo Dry Valleys (MDVs), preserved terrestrial landscapes reflect persistent cold conditions and have been interpreted as indicators of a stable polar ice sheet, implying that the Antarctic Ice Sheet was largely insensitive during past warm periods. These disparate data-based perspectives highlight a long-standing debate around the past stability of the Antarctic Ice Sheet, with direct implications for the future ice-sheet response to ongoing climate warming. We reconcile marine records of dynamic ice-sheet behavior and episodic open-marine conditions with nearby ancient terrestrial landscapes recording consistent cold-polar conditions. Coupled ice-sheet and regional climate models nested at a high resolution are used to investigate surface temperatures in the MDVs during past warm periods. We find that high-elevation regions of the MDVs remain below freezing even when ice-free conditions prevail in the nearby Ross Sea. We compare observed landscapes with the spatial extent of modeled persistent cold conditions required for preservation of these ancient features, demonstrating that frozen MDVs landscapes could have coexisted with receded or collapsed ice sheets during past warm periods. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)
    Antarctic ice sheet and climate evolution during the mid-Miocene has direct relevance for understanding ice sheet (in)stability and the long-term response to elevated atmospheric CO2in the future. Geologic records reconstruct major fluctuations in the volume and extent of marine and terrestrial ice during the mid-Miocene, revealing a dynamic Antarctic ice-sheet response to past climatic variations. We use an ensemble of climate – ice sheet – vegetation model simulations spanning a range of CO2concentrations, Transantarctic Mountain uplift scenarios, and glacial/interglacial climatic conditions to identify climate and ice-sheet conditions consistent with Antarctic mid-Miocene terrestrial and marine geological records. We explore climatic variability at both continental and regional scales, focusing specifically on Victoria Land and Wilkes Land Basin regions using a high-resolution nested climate model over these domains. We find that peak warmth during the Miocene Climate Optimum is characterized by a thick terrestrial ice sheet receded from the coastline under high CO2concentrations. During the Middle Miocene Climate Transition, CO2episodically dropped below a threshold value for marine-based ice expansion. Comparison of model results with geologic data support ongoing Transantarctic Mountain uplift throughout the mid-Miocene. Modeled ice sheet dynamics over the Wilkes Land Basin were highly sensitive to CO2concentrations. This work provides a continental-wide context for localized geologic paleoclimate and vegetation records, integrating multiple datasets to reconstruct snapshots of ice sheet and climatic conditions during a pivotal period in Earth’s history. 
    more » « less
  10. null (Ed.)
    Abstract The Greenland ice sheet (GrIS) covers a complex network of canyons thought to be preglacial and fluvial in origin, implying that these features have influenced the ice sheet since its inception. The largest of these canyons terminates in northwest Greenland at the outlet of the Petermann Glacier. Yet, the genesis of this canyon, and similar features in northern Greenland, remains unknown. Here, we present numerical model simulations of early GrIS history and show that interactions among climate, the growing ice sheet, and preexisting topography may have contributed to the excavation of the canyon via repeated catastrophic outburst floods. Our results have implications for interpreting sedimentary and geomorphic features beneath the GrIS and around its marine margins, and they document a novel mechanism for landscape erosion in Greenland. 
    more » « less