Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Pliocene global temperatures periodically exceeded modern levels, offering insights into ice sheet sensitivity to warm climates. Ice-proximal geologic records from this period provide crucial but limited glimpses of Antarctic Ice Sheet behavior. We use an ice sheet model driven by climate model snapshots to simulate transient glacial cyclicity from 4.5 to 2.6 Ma, providing spatial and temporal context for geologic records. By evaluating model simulations against a comprehensive synthesis of geologic data, we translate the intermittent geologic record into a continuous reconstruction of Antarctic sea level contributions, revealing a dynamic ice sheet that contributed up to 25 m of glacial-interglacial sea level change. Model grounding line behavior across all major Antarctic catchments exhibits an extended period of receded ice during the mid-Pliocene, coincident with proximal geologic data around Antarctica but earlier than peak warmth in the Northern Hemisphere. Marine ice sheet collapse is triggered with 1.5 °C model subsurface ocean warming.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Freshwater discharge from ice sheets induces surface atmospheric cooling and subsurface ocean warming, which are associated with negative and positive feedbacks respectively. However, uncertainties persist regarding these feedbacks’ relative strength and combined effect. Here we assess associated feedbacks in a coupled ice sheet-climate model, and show that for the Antarctic Ice Sheet the positive feedback dominates in moderate future warming scenarios and in the early stage of ice sheet retreat, but is overwhelmed by the negative feedback in intensive warming scenarios when the West Antarctic Ice Sheet undergoes catastrophic collapse. The Atlantic Meridional Overturning Circulation is affected by freshwater discharge from both the Greenland and the Antarctic ice sheets and, as an interhemispheric teleconnection bridge, exacerbates the opposing ice sheet’s retreat via the Bipolar Seesaw. These results highlight the crucial role of ice sheet-climate interactions via freshwater flux in future ice sheet retreat and associated sea-level rise.more » « less
-
Abstract Seismic tomography models indicate highly variable Earth structure beneath Antarctica with anomalously low shallow mantle viscosities below West Antarctica. An improved projection of the contribution of the Antarctic Ice Sheet to sea‐level change requires consideration of this complexity to precisely account for water expelled into the ocean from uplifting marine sectors. Here we build a high‐resolution 3‐D viscoelastic structure model based on recent inferences of seismic velocity heterogeneity below the continent. The model serves as input to a global‐scale sea‐level model that we use to investigate the influence of solid Earth deformation in Antarctica on future global mean sea‐level (GMSL) rise. Our calculations are based on a suite of ice mass projections generated with a range of climate forcings and suggest that water expulsion from the rebounding marine basins contributes 4%–16% and 7%–14% to the projected GMSL change at 2100 and 2500, respectively.more » « less
-
Abstract Retreat or advance of an ice sheet perturbs the Earth's solid surface, rotational vector, and the gravitational field, which in turn feeds back onto the evolution of the ice sheet over a range of timescales. Throughout the last glacial cycle, ice sheets over the Northern Hemisphere have gone through multiple growth and retreat phases, but the dynamics during these phases are not well understood. In this study, we apply a coupled ice sheet‐glacial isostatic adjustment model to simulate the Northern Hemisphere Ice Sheets over the last glacial cycle. We focus on understanding the influence of solid Earth deformation and gravitational field perturbations associated with surface (ice and water) loading changes on the dynamics of terrestrial and marine‐based ice sheets during different phases of the glacial cycle. Our results show that solid Earth deformation enhances glaciation during growth phases and melting during retreat phases in terrestrial regions through ice‐elevation feedback, and gravitational field perturbations have a stabilizing influence on marine‐based ice sheets in regions such as Hudson Bay in North America and Barents and Kara Seas in Eurasia during retreat phases through sea‐level feedback. Our results also indicate that solid Earth deformation influences the relative sensitivity of the North American and Eurasian ice sheets to climate and thus the timing and magnitude of their fluctuations throughout the last glacial cycle.more » « less
-
Abstract Sea level rise (SLR) is a long‐lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate for the deep ocean and ice sheets. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process‐based models. However, risk‐averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientists and practitioners builds on a framework of discussing physical evidence to quantify high‐end global SLR for practitioners. The approach is complementary to the IPCC AR6 report and provides further physically plausible high‐end scenarios. High‐end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2°C in 2100 (RCP2.6/SSP1‐2.6) relative to pre‐industrial values our high‐end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for a (RCP8.5/SSP5‐8.5), we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long‐term benefits of mitigation. However, even a modest 2°C warming may cause multi‐meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high‐end assessments focused on instability mechanisms in Antarctica, while here we emphasize the importance of the timing of ice shelf collapse around Antarctica. This is highly uncertain due to low understanding of the driving processes. Hence both process understanding and emission scenario control high‐end SLR.more » « less
-
Abstract. The contribution of the Greenland Ice Sheet (GIS) to sea level rise (SLR) is accelerating and there is an urgent need to improve predictions of when and from what parts of the ice sheet Greenland will contribute its first meter. Estimating the volume of Greenland ice that was lost during past warm periods offers a way to constrain the ice sheet’s response to future warming. Sub-ice sediment and bedrock, retrieved from deep ice core campaigns or targeted drilling efforts, yield critical and direct information about past ice-free conditions. However, it is challenging to scale the few available sub-ice point measurements to the geometry of the entire ice sheet. Here, we provide a framework for assessing sea-level potential, which we define as the amount the GIS has contributed to sea level when a particular location in Greenland is ice-free, from an ensemble of ice-sheet model simulations representing a wide range of plausible deglaciation scenarios. An assessment of dominant sources of uncertainty in our paleo ice sheet modelling, including climate forcing, ice-sheet initialization, and solid-Earth properties, reveals spatial patterns in the sensitivity of the ice sheet to these processes and related feedbacks. We find that the sea-level potential of central Greenland is most sensitive to lithospheric feedbacks and ice-sheet initialization, whereas the ice-sheet margins are most sensitive to climate forcing parameters. Our framework allows us to quantify the local and regional uncertainty in sea-level potential, which we use to evaluate the GIS bedrock according to the usefulness of information sub-ice sediments and bedrock provide about past ice-sheet geometry. Through our ensemble approach, we can assign a plausible range of GIS contributions to global sea level for deglaciated conditions at any site. Our results identify primarily areas in southwest Greenland, and secondarily north Greenland, as best-suited for subglacial access drilling that seeks to constrain the response of the ice sheet to past and future warming.more » « lessFree, publicly-accessible full text available August 8, 2025
-
The response of the Antarctic Ice Sheet (AIS) to climate change is the largest uncertainty in projecting future sea level. The impact of three-dimensional (3D) Earth structure on the AIS and future global sea levels is assessed here by coupling a global glacial isostatic adjustment model incorporating 3D Earth structure to a dynamic ice-sheet model. We show that including 3D viscous effects produces rapid uplift in marine sectors and reduces projected ice loss for low greenhouse gas emission scenarios, lowering Antarctica’s contribution to global sea level in the coming centuries by up to ~40%. Under high-emission scenarios, ice retreat outpaces uplift, and sea-level rise is amplified by water expulsion from Antarctic marine areas.more » « lessFree, publicly-accessible full text available August 2, 2025
-
The variability of the Antarctic and Greenland ice sheets occurs on various timescales and is important for projections of sea level rise; however, there are substantial uncertainties concerning future ice-sheet mass changes. In this Review, we explore the degree to which short-term fluctuations and extreme glaciological events reflect the ice sheets’ long-term evolution and response to ongoing climate change. Short-term (decadal or shorter) variations in atmospheric or oceanic conditions can trigger amplifying feedbacks that increase the sensitivity of ice sheets to climate change. For example, variability in ocean-induced and atmosphere-induced melting can trigger ice thinning, retreat and/or collapse of ice shelves, grounding-line retreat, and ice flow acceleration. The Antarctic Ice Sheet is especially prone to increased melting and ice sheet collapse from warm ocean currents, which could be accentuated with increased climate variability. In Greenland both high and low melt anomalies have been observed since 2012, highlighting the influence of increased interannual climate variability on extreme glaciological events and ice sheet evolution. Failing to adequately account for such variability can result in biased projections of multi-decadal ice mass loss. Therefore, future research should aim to improve climate and ocean observations and models, and develop sophisticated ice sheet models that are directly constrained by observational records and can capture ice dynamical changes across various timescales.more » « less
-
Uncertainty about sea-level rise is dominated by uncertainty about iceberg calving, mass loss from glaciers or ice sheets by fracturing. Review of the rapidly growing calving literature leads to a few overarching hypotheses. Almost all calving occurs near or just downglacier of a location where ice flows into an environment more favorable for calving, so the calving rate is controlled primarily by flow to the ice margin rather than by fracturing. Calving can be classified into five regimes, which tend to be persistent, predictable, and insensitive to small perturbations in flow velocity, ice characteristics, or environmental forcing; these regimes can be studied instrumentally. Sufficiently large perturbations may cause sometimes-rapid transitions between regimes or between calving and noncalving behavior, during which fracturing may control the rate of calving. Regime transitions underlie the largest uncertainties in sea-level rise projections, but with few, important exceptions, have not been observed instrumentally. This is especially true of the most important regime transitions for sea-level rise. Process-based models informed by studies of ongoing calving, and assimilation of deep-time paleoclimatic data, may help reduce uncertainties about regime transitions. Failure to include calving accurately in predictive models could lead to large underestimates of warming-induced sea-level rise. ▪ Iceberg calving, the breakage of ice from glaciers and ice sheets, affects sea level and many other environmental issues. ▪ Modern rates of iceberg calving usually are controlled by the rate of ice flow past restraining points, not by the brittle calving processes. ▪ Calving can be classified into five regimes, which are persistent, predictable, and insensitive to small perturbations. ▪ Transitions between calving regimes are especially important and with warming might cause faster sea-level rise than generally projected. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.more » « less