Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            ABSTRACT In recent years, numerous flood events have caused loss of life, widespread disruption, and damage across the globe. These devastating impacts highlight the importance of a better understanding of flood generating processes, their impacts, and their variability under climate and landscape changes. Here, we argue that the ability to better model flooding is underpinned by the grand challenge of understanding flood generation mechanisms and potential impacts. To address this challenge, the World Meteorological Organization‐Global Energy and Water Exchanges (GEWEX) Hydrometeorology Panel (GHP) aims to establish a Global Flood Crosscutting project to propagate flood modeling and research knowledge across regions and to synthesize results at the global scale. This paper outlines a framework for understanding the dynamics and impacts of runoff generation processes and a rationale for the role of a Global Flood Crosscutting project to address these challenges. Within this Global Flood Crosscutting project, we will establish a common terminology and methods to enable the global research community to exchange knowledge and experiences, and to design experiments toward developing actionable recommendations for more effective flood management practices and policies for improved resilience. This harmonization of rich perspectives across disciplines will foster the co‐production of knowledge primed to advance flood research, particularly in the current period of heightened climate variability and rapid change. It will create a new transdisciplinary paradigm for flood science, wherein different dimensions of mechanistic understanding and processes are rigorously considered alongside socioeconomic impacts, early warning communications, and longer‐term adaptation to alleviate flood risks in society.more » « less
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Deep learning algorithms are exceptionally valuable tools for collecting and analyzing the catastrophic readiness and countless actionable flood data. Convolutional neural networks (CNNs) are one form of deep learning algorithms widely used in computer vision which can be used to study flood images and assign learnable weights to various objects in the image. Here, we leveraged and discussed how connected vision systems can be used to embed cameras, image processing, CNNs, and data connectivity capabilities for flood label detection. We built a training database service of >9000 images (image annotation service) including the image geolocation information by streaming relevant images from social media platforms, Department of Transportation (DOT) 511 traffic cameras, the US Geological Survey (USGS) live river cameras, and images downloaded from search engines. We then developed a new python package called “FloodImageClassifier” to classify and detect objects within the collected flood images. “FloodImageClassifier” includes various CNNs architectures such as YOLOv3 (You look only once version 3), Fast R–CNN (Region-based CNN), Mask R–CNN, SSD MobileNet (Single Shot MultiBox Detector MobileNet), and EfficientDet (Efficient Object Detection) to perform both object detection and segmentation simultaneously. Canny Edge Detection and aspect ratio concepts are also included in the package for flood water level estimation and classification. The pipeline is smartly designed to train a large number of images and calculate flood water levels and inundation areas which can be used to identify flood depth, severity, and risk. “FloodImageClassifier” can be embedded with the USGS live river cameras and 511 traffic cameras to monitor river and road flooding conditions and provide early intelligence to emergency response authorities in real-time.more » « less
- 
            null (Ed.)Due to the importance of object detection in video analysis and image annotation, it is widely utilized in a number of computer vision tasks such as face recognition, autonomous vehicles, activity recognition, tracking objects and identity verification. Object detection does not only involve classification and identification of objects within images, but also involves localizing and tracing the objects by creating bounding boxes around the objects and labelling them with their respective prediction scores. Here, we leverage and discuss how connected vision systems can be used to embed cameras, image processing, Edge Artificial Intelligence (AI), and data connectivity capabilities for flood label detection. We favored the engineering definition of label detection that a label is a sequence of discrete measurable observations obtained using a capturing device such as web cameras, smart phone, etc. We built a Big Data service of around 1000 images (image annotation service) including the image geolocation information from various flooding events in the Carolinas (USA) with a total of eight different object categories. Our developed platform has several smart AI tools and task configurations that can detect objects’ edges or contours which can be manually adjusted with a threshold setting so as to best segment the image. The tool has the ability to train the dataset and predict the labels for large scale datasets which can be used as an object detector to drastically reduce the amount of time spent per object particularly for real-time image-based flood forecasting. This research is funded by the US National Science Foundation (NSF).more » « less
- 
            Floods are among the most destructive natural hazard that affect millions of people across the world leading to severe loss of life and damage to property, critical infrastructure, and agriculture. Internet of Things (IoTs), machine learning (ML), and Big Data are exceptionally valuable tools for collecting the catastrophic readiness and countless actionable data. The aim of this presentation is to introduce Flood Analytics Information System (FAIS) as a data gathering and analytics system. FAIS application is smartly designed to integrate crowd intelligence, ML, and natural language processing of tweets to provide warning with the aim to improve flood situational awareness and risk assessment. FAIS has been Beta tested during major hurricane events in US where successive storms made extensive damage and disruption. The prototype successfully identifies a dynamic set of at-risk locations/communities using the USGS river gauge height readings and geotagged tweets intersected with watershed boundary. The list of prioritized locations can be updated, as the river monitoring system and condition change over time (typically every 15 minutes). The prototype also performs flood frequency analysis (FFA) using various probability distributions with the associated uncertainty estimation to assist engineers in designing safe structures. This presentation will discuss about the FAIS functionalities and real-time implementation of the prototype across south and southeast USA. This research is funded by the US National Science Foundation (NSF).more » « less
- 
            With the rapid development of the Internet of Things (IoT) and Big Data infrastructure, crowdsourcing techniques have emerged to facilitate data processing and problem solving particularly for flood emergences purposes. A Flood Analytics Information System (FAIS) has been developed as a Python Web application to gather Big Data from multiple servers and analyze flooding impacts during historical and real-time events. The application is smartly designed to integrate crowd intelligence, machine learning (ML), and natural language processing of tweets to provide flood warning with the aim to improve situational awareness for flood risk management. FAIS, a national scale prototype, combines flood peak rates and river level information with geotagged tweets to identify a dynamic set of at-risk locations to flooding. The prototype was successfully tested in real-time during Hurricane Dorian flooding as well as for historical event (Hurricanes Florence) across the Carolinas, USA where the storm made extensive disruption to infrastructure and communities.more » « less
- 
            With the rapid development of the Internet of Things (IoT) and Big Data infrastructure, crowdsourcing techniques have emerged to facilitate data processing and problem solving particularly for flood emergences purposes. A Flood Analytics Information System (FAIS) has been developed as a Python Web application to gather Big Data from multiple servers and analyze flooding impacts during historical and real-time events. The application is smartly designed to integrate crowd intelligence, machine learning (ML), and natural language processing of tweets to provide flood warning with the aim to improve situational awareness for flood risk management. FAIS, a national scale prototype, combines flood peak rates and river level information with geotagged tweets to identify a dynamic set of at-risk locations to flooding. The prototype was successfully tested in real-time during Hurricane Dorian flooding as well as for historical event (Hurricanes Florence) across the Carolinas, USA where the storm made extensive disruption to infrastructure and communities.more » « less
- 
            Successive hurricane events have brought new challenges to human life, critical infrastructure and the environment in the United States. This study introduced Flood Analytics Information System (FAIS) as a national scale data analytics application for real-time flood data collection and analysis. FAIS has been Beta tested across a mixed urban and rural basin in the Carolinas where Hurricane Florence made extensive damages and disruption. Our research aim was to develop and test an integrated solution based on real time Big data for stakeholder map-based dashboard visualizations that can be applicable to other countries and a range of weather-driven emergency situations. The prototype successfully identifies a dynamic set of at-risk locations using web-based river level and flood information. The list of prioritized locations can be updated every 15 minutes, as the environmental information and condition change. FAIS will be extended to collect data from other countries and other kinds of weather-related hazards such as snowstorms and wildfires.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available