skip to main content


Title: A national scale big data analytics pipeline to assess the potential impacts of flooding on critical infrastructures and communities
With the rapid development of the Internet of Things (IoT) and Big Data infrastructure, crowdsourcing techniques have emerged to facilitate data processing and problem solving particularly for flood emergences purposes. A Flood Analytics Information System (FAIS) has been developed as a Python Web application to gather Big Data from multiple servers and analyze flooding impacts during historical and real-time events. The application is smartly designed to integrate crowd intelligence, machine learning (ML), and natural language processing of tweets to provide flood warning with the aim to improve situational awareness for flood risk management. FAIS, a national scale prototype, combines flood peak rates and river level information with geotagged tweets to identify a dynamic set of at-risk locations to flooding. The prototype was successfully tested in real-time during Hurricane Dorian flooding as well as for historical event (Hurricanes Florence) across the Carolinas, USA where the storm made extensive disruption to infrastructure and communities.  more » « less
Award ID(s):
2035685
NSF-PAR ID:
10270712
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Environmental modelling software
ISSN:
1364-8152
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the rapid development of the Internet of Things (IoT) and Big Data infrastructure, crowdsourcing techniques have emerged to facilitate data processing and problem solving particularly for flood emergences purposes. A Flood Analytics Information System (FAIS) has been developed as a Python Web application to gather Big Data from multiple servers and analyze flooding impacts during historical and real-time events. The application is smartly designed to integrate crowd intelligence, machine learning (ML), and natural language processing of tweets to provide flood warning with the aim to improve situational awareness for flood risk management. FAIS, a national scale prototype, combines flood peak rates and river level information with geotagged tweets to identify a dynamic set of at-risk locations to flooding. The prototype was successfully tested in real-time during Hurricane Dorian flooding as well as for historical event (Hurricanes Florence) across the Carolinas, USA where the storm made extensive disruption to infrastructure and communities. 
    more » « less
  2. Floods are among the most destructive natural hazard that affect millions of people across the world leading to severe loss of life and damage to property, critical infrastructure, and agriculture. Internet of Things (IoTs), machine learning (ML), and Big Data are exceptionally valuable tools for collecting the catastrophic readiness and countless actionable data. The aim of this presentation is to introduce Flood Analytics Information System (FAIS) as a data gathering and analytics system. FAIS application is smartly designed to integrate crowd intelligence, ML, and natural language processing of tweets to provide warning with the aim to improve flood situational awareness and risk assessment. FAIS has been Beta tested during major hurricane events in US where successive storms made extensive damage and disruption. The prototype successfully identifies a dynamic set of at-risk locations/communities using the USGS river gauge height readings and geotagged tweets intersected with watershed boundary. The list of prioritized locations can be updated, as the river monitoring system and condition change over time (typically every 15 minutes). The prototype also performs flood frequency analysis (FFA) using various probability distributions with the associated uncertainty estimation to assist engineers in designing safe structures. This presentation will discuss about the FAIS functionalities and real-time implementation of the prototype across south and southeast USA. This research is funded by the US National Science Foundation (NSF). 
    more » « less
  3. Successive hurricane events have brought new challenges to human life, critical infrastructure and the environment in the United States. This study introduced Flood Analytics Information System (FAIS) as a national scale data analytics application for real-time flood data collection and analysis. FAIS has been Beta tested across a mixed urban and rural basin in the Carolinas where Hurricane Florence made extensive damages and disruption. Our research aim was to develop and test an integrated solution based on real time Big data for stakeholder map-based dashboard visualizations that can be applicable to other countries and a range of weather-driven emergency situations. The prototype successfully identifies a dynamic set of at-risk locations using web-based river level and flood information. The list of prioritized locations can be updated every 15 minutes, as the environmental information and condition change. FAIS will be extended to collect data from other countries and other kinds of weather-related hazards such as snowstorms and wildfires. 
    more » « less
  4. Abstract

    Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this study was to adopt and test a novel structured deep-learning model for urban flood nowcasting by integrating physics-based and human-sensed features. We present a new computational modeling framework including an attention-based spatial–temporal graph convolution network (ASTGCN) model and different streams of data that are collected in real-time, preprocessed, and fed into the model to consider spatial and temporal information and dependencies that improve flood nowcasting. The novelty of the computational modeling framework is threefold: first, the model is capable of considering spatial and temporal dependencies in inundation propagation thanks to the spatial and temporal graph convolutional modules; second, it enables capturing the influence of heterogeneous temporal data streams that can signal flooding status, including physics-based features (e.g., rainfall intensity and water elevation) and human-sensed data (e.g., residents’ flood reports and fluctuations of human activity) on flood nowcasting. Third, its attention mechanism enables the model to direct its focus to the most influential features that vary dynamically and influence the flood nowcasting. We show the application of the modeling framework in the context of Harris County, Texas, as the study area and 2017 Hurricane Harvey as the flood event. Three categories of features are used for nowcasting the extent of flood inundation in different census tracts: (i) static features that capture spatial characteristics of various locations and influence their flood status similarity, (ii) physics-based dynamic features that capture changes in hydrodynamic variables, and (iii) heterogeneous human-sensed dynamic features that capture various aspects of residents’ activities that can provide information regarding flood status. Results indicate that the ASTGCN model provides superior performance for nowcasting of urban flood inundation at the census-tract level, with precision 0.808 and recall 0.891, which shows the model performs better compared with other state-of-the-art models. Moreover, ASTGCN model performance improves when heterogeneous dynamic features are added into the model that solely relies on physics-based features, which demonstrates the promise of using heterogenous human-sensed data for flood nowcasting. Given the results of the comparisons of the models, the proposed modeling framework has the potential to be more investigated when more data of historical events are available in order to develop a predictive tool to provide community responders with an enhanced prediction of the flood inundation during urban flood.

     
    more » « less
  5. Abstract

    This paper presents a Bayesian network model to assess the vulnerability of the flood control infrastructure and to simulate failure cascade based on the topological structure of flood control networks along with hydrological information gathered from sensors. Two measures are proposed to characterize the flood control network vulnerability and failure cascade: (a) node failure probability (NFP), which determines the failure likelihood of each network component under each scenario of rainfall event, and (b) failure cascade susceptibility, which captures the susceptibility of a network component to failure due to failure of other links. The proposed model was tested in both single watershed and multiple watershed scenarios in Harris County, Texas using historical data from three different flooding events, including Hurricane Harvey in 2017. The proposed model was able to identify the most vulnerable flood control network segments prone to flooding in the face of extreme rainfall. The framework and results furnish a new tool and insights to help decision‐makers to prioritize infrastructure enhancement investments and actions. The proposed Bayesian network modeling framework also enables simulation of failure cascades in flood control infrastructures, and thus could be used for scenario planning as well as near‐real‐time inundation forecasting to inform emergency response planning and operation, and hence improve the flood resilience of urban areas.

     
    more » « less