skip to main content

Search for: All records

Award ID contains: 2035876

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Pauli exclusion principle governs the fundamental structure and function of fermionic systems from molecules to materials. Nonetheless, when such a fermionic system is in a pure state, it is subject to additional restrictions known as the generalized Pauli constraints (GPCs). Here we verify experimentally the violation of the GPCs for an open quantum system using data from a superconducting-qubit quantum computer. We prepare states of systems with three-to-seven qubits directly on the quantum device and measure the one-fermion reduced density matrix (1-RDM) from which we can test the GPCs. We find that the GPCs of the 1-RDM are sufficiently sensitive to detect the openness of the 3-to-7 qubit systems in the presence of a single-qubit environment. Results confirm experimentally that the openness of a many-fermion quantum system can be decoded from only a knowledge of the 1-RDM with potential applications from quantum computing and sensing to noise-assisted energy transfer.

    more » « less
  2. Abstract

    Molecular simulations generally require fermionic encoding in which fermion statistics are encoded into the qubit representation of the wave function. Recent calculations suggest that fermionic encoding of the wave function can be bypassed, leading to more efficient quantum computations. Here we show that the two-electron reduced density matrix (2-RDM) can be expressed as a unique functional of the unencodedN-qubit-particle wave function without approximation, and hence, the energy can be expressed as a functional of the 2-RDM without fermionic encoding of the wave function. In contrast to current hardware-efficient methods, the derived functional has a unique, one-to-one (and onto) mapping between the qubit-particle wave functions and 2-RDMs, which avoids the over-parametrization that can lead to optimization difficulties such as barren plateaus. An application to computing the ground-state energy and 2-RDM of H4is presented.

    more » « less
  3. Free, publicly-accessible full text available August 1, 2024