skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2036873

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article details the motivation and design of an experiment to investigate the effects of artificially intelligent cognitive assistive agents on coordination efforts in manufacturing teams. As automation solutions become more accessible and products rapidly grow in complexity, there are significant calls to leverage abilities of both artificial agents and human workers to maximize team functioning and product output. As such, we propose an experimental design where we introduce a cognitive agent with two levels of autonomy (low, and high) into a team of participants during an assembly task. We hypothesized that cognitive assistive technologies would enhance coordination within assembly teams, leading to higher productivity and reduced errors, with initial data suggesting trends in support of these hypotheses. We seek to demonstrate the value of cognitive agents in augmenting human workers, allowing manufacturers to see the benefit of increased productivity while retaining value and relevance of human labor in the face of technological development. 
    more » « less
  2. Abstract As the need to tackle complex clinical and societal problems rises, researchers are increasingly taking on a translational approach. This approach, which seeks to integrate theories, methodologies, and frameworks from various disciplines across a team of researchers, places emphasis on translation of findings in order to offer practical solutions to real-world problems. While translational research leads to a number of positive outcomes, there are also a multitude of barriers to conducting effective team science, such as effective coordination and communication across the organizational, disciplinary, and even geographic boundaries of science teams. Given these barriers to success, there is a significant need to establish team interventions that increase science team effectiveness as translational research becomes the new face of science. This review is intended to provide translational scientists with an understanding of barriers to effective team science and equip them with the necessary tools to overcome such barriers. We provide an overview of translational science teams, discuss barriers to science team effectiveness, demonstrate the lacking state of current interventions, and present recommendations for improving interventions in science teams by applying best practices from the teams and groups literature across the four phases of transdisciplinary research. 
    more » « less