skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Title: Examining the Effects of Cognitive Assistive Agents on Team Coordination in Manufacturing Teams
This article details the motivation and design of an experiment to investigate the effects of artificially intelligent cognitive assistive agents on coordination efforts in manufacturing teams. As automation solutions become more accessible and products rapidly grow in complexity, there are significant calls to leverage abilities of both artificial agents and human workers to maximize team functioning and product output. As such, we propose an experimental design where we introduce a cognitive agent with two levels of autonomy (low, and high) into a team of participants during an assembly task. We hypothesized that cognitive assistive technologies would enhance coordination within assembly teams, leading to higher productivity and reduced errors, with initial data suggesting trends in support of these hypotheses. We seek to demonstrate the value of cognitive agents in augmenting human workers, allowing manufacturers to see the benefit of increased productivity while retaining value and relevance of human labor in the face of technological development.  more » « less
Award ID(s):
2036873 1928527
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Page Range / eLocation ID:
1184 to 1188
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synchronous, face-to-face interactions such as brainstorming are considered essential for creative tasks (the old normal). However, face-to-face interactions are difficult to arrange because of the diverse locations and conflicting availability of people—a challenge made more prominent by work-from-home practices during the COVID-19 pandemic (the new normal). In addition, face-to-face interactions are susceptible to cognitive interference. We employ crowdsourcing as an avenue to investigate creativity in asynchronous, online interactions. We choose product ideation,a natural task for the crowd since it requires human insight and creativity into what product features would be novel and useful. We compare the performance of solo crowd workers with asynchronous teams of crowd workers formed without prior coordination. Our findings suggest that, first, crowd teamwork yields fewer but more creative ideas than solo crowdwork. The enhanced team creativity results when (1) team workers reflect on each other’s ideas, and (2) teams are composed of workers of reflective, as opposed to active or mixed, personality types. Second, cognitive interference, known to inhibit creativity in face-to-face teams, may not be significant in crowd teams. Third, teamwork promotes better achievement emotions for crowd workers. These findings provide a basis for trading off creativity, quantity, and worker happiness in setting up crowdsourcing workflows for product ideation. 
    more » « less
  2. Emerging on-demand service platforms (OSPs) have recently embraced teamwork as a strategy for stimulating workers’ productivity and mediating temporal supply and demand imbalances. This research investigates the team contest scheme design problem considering work schedules. Introducing teams on OSPs creates a hierarchical single-leader multi-follower game. The leader (platform) establishes rewards and intrateam revenue-sharing rules for distributing workers’ payoffs. Each follower (team) competes with others by coordinating the schedules of its team members to maximize the total expected utility. The concurrence of interteam competition and intrateam coordination causes dual effects, which are captured by an equilibrium analysis of the followers’ game. To align the platform’s interest with workers’ heterogeneous working-time preferences, we propose a profit-maximizing contest scheme consisting of a winner’s reward and time-varying payments. A novel algorithm that combines Bayesian optimization, duality, and a penalty method solves the optimal scheme in the nonconvex equilibrium-constrained problem. Our results indicate that teamwork is a useful strategy with limitations. Under the proposed scheme, team contest always benefits workers. Intrateam coordination helps teams strategically mitigate the negative externalities caused by overcompetition among workers. For the platform, the optimal scheme can direct teams’ schedules toward more profitable market equilibria when workers have inaccurate perceptions of the market. History: This paper has been accepted for the Service Science Special Issue on Innovation in Transportation-Enabled Urban Services. Funding: This work was supported by the National Science Foundation [Grant FW-HTF-P 2222806]. Supplemental Material: The online appendices are available at . 
    more » « less
  3. Teamwork is a set of interrelated reasoning, actions and behaviors of team members that facilitate common objectives. Teamwork theory and experiments have resulted in a set of states and processes for team effectiveness in both human-human and agent-agent teams. However, human-agent teaming is less well studied because it is so new and involves asymmetry in policy and intent not present in human teams. To optimize team performance in human-agent teaming, it is critical that agents infer human intent and adapt their polices for smooth coordination. Most literature in human-agent teaming builds agents referencing a learned human model. Though these agents are guaranteed to perform well with the learned model, they lay heavy assumptions on human policy such as optimality and consistency, which is unlikely in many real-world scenarios. In this paper, we propose a novel adaptive agent architecture in human-model-free setting on a two-player cooperative game, namely Team Space Fortress (TSF). Previous human-human team research have shown complementary policies in TSF game and diversity in human players’ skill, which encourages us to relax the assumptions on human policy. Therefore, we discard learning human models from human data, and instead use an adaptation strategy on a pre-trained library of exemplar policies composed of RL algorithms or rule-based methods with minimal assumptions of human behavior. The adaptation strategy relies on a novel similarity metric to infer human policy and then selects the most complementary policy in our library to maximize the team performance. The adaptive agent architecture can be deployed in real-time and generalize to any off-the-shelf static agents. We conducted human-agent experiments to evaluate the proposed adaptive agent framework, and demonstrated the suboptimality, diversity, and adaptability of human policies in human-agent teams. 
    more » « less
  4. null (Ed.)
    Today’s classrooms are remarkably different from those of yesteryear. In place of individual students responding to the teacher from neat rows of desks, one more typically finds students working in groups on projects, with a teacher circulating among groups. AI applications in learning have been slow to catch up, with most available technologies focusing on personalizing or adapting instruction to learners as isolated individuals. Meanwhile, an established science of Computer Supported Collaborative Learning has come to prominence, with clear implications for how collaborative learning could best be supported. In this contribution, I will consider how intelligence augmentation could evolve to support collaborative learning as well as three signature challenges of this work that could drive AI forward. In conceptualizing collaborative learning, Kirschner and Erkens (2013) provide a useful 3x3 framework in which there are three aspects of learning (cognitive, social and motivational), three levels (community, group/team, and individual) and three kinds of pedagogical supports (discourse-oriented, representation-oriented, and process-oriented). As they engage in this multiply complex space, teachers and learners are both learning to collaborate and collaborating to learn. Further, questions of equity arise as we consider who is able to participate and in which ways. Overall, this analysis helps us see the complexity of today’s classrooms and within this complexity, the opportunities for augmentation or “assistance to become important and even essential. An overarching design concept has emerged in the past 5 years in response to this complexity, the idea of intelligent augmentation for “orchestrating” classrooms (Dillenbourg, et al, 2013). As a metaphor, orchestration can suggest the need for a coordinated performance among many agents who are each playing different roles or voicing different ideas. Practically speaking, orchestration suggests that “intelligence augmentation” could help many smaller things go well, and in doing so, could enable the overall intention of the learning experience to succeed. Those smaller things could include helping the teacher stay aware of students or groups who need attention, supporting formation of groups or transitions from one activity to the next, facilitating productive social interactions in groups, suggesting learning resources that would support teamwork, and more. A recent panel of AI experts identified orchestration as an overarching concept that is an important focus for near-term research and development for intelligence augmentation (Roschelle, Lester & Fusco, 2020). Tackling this challenging area of collaborative learning could also be beneficial for advancing AI technologies overall. Building AI agents that better understand the social context of human activities has broad importance, as does designing AI agents that can appropriately interact within teamwork. Collaborative learning has trajectory over time, and designing AI systems that support teams not just with a short term recommendation or suggestion but in long-term developmental processes is important. Further, classrooms that are engaged in collaborative learning could become very interesting hybrid environments, with multiple human and AI agents present at once and addressing dual outcome goals of learning to collaborate and collaborating to learn; addressing a hybrid environment like this could lead to developing AI systems that more robustly help many types of realistic human activity. In conclusion, the opportunity to make a societal impact by attending to collaborative learning, the availability of growing science of computer-supported collaborative learning and the need to push new boundaries in AI together suggest collaborative learning as a challenge worth tackling in coming years. 
    more » « less
  5. In this pilot study, we used the Interaction Dynamics Notation (IDN), originally designed for use with engineering design teams, to explore the dynamic interactions of five NSF I-Corps™ teams engaged in a simple design activity. Our aim was to relate these interaction data to selected cognitive characteristics of the team members, as well as team design outcomes and individual perceptions related to the experience. The individual cognitive characteristics we assessed focused on cognitive style, as measured by the Kirton Adaption-Innovation inventory (KAI), while team outcomes included the novelty, usefulness, and feasibility of each team’s design solutions, as well as their success within and beyond the NSF I-Corps™ program. Our findings show that the Interaction Dynamics Notation (IDN) can be readily extended to the study of entrepreneurial teams, with important insights gained from the combined study of interaction dynamics, individual cognitive characteristics as measured by KAI, and team outcomes. The results of this study demonstrate the feasibility and value of this approach for investigating the dynamic interactions of NSF I-Corps™ teams, as well as product-focused design teams in general. 
    more » « less