skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2038726

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 10, 2025
  2. Free, publicly-accessible full text available November 6, 2025
  3. Computing systems, including real-time embedded systems, are becoming increasingly connected to allow for more advanced and safer operation. Such embedded systems are also often resource-constrained, for example, with lower processing capabilities compared to general-purpose computing systems like desktops or servers. With the advent of paradigms such as internet-of-things (IoT), embedded systems in both commercial and industrial contexts are being increasingly interconnected and exposed to the external networks to improve automation and efficiency of operation. However, allowing external interfaces to such embedded systems increases their exposure to attackers. With an increase in attacks against embedded systems ranging from home appliances to industrial control systems operating critical equipment that have real-time requirements, it is imperative that defense mechanisms be created that explicitly consider such resource and real-time constraints. Control-flow integrity (CFI) is a family of defense mechanisms that prevent attackers from modifying the flow of execution. We survey CFI techniques, ranging from the basic to state of the art, that are built for embedded systems and real-time embedded systems and find that there is a dearth, especially for real-time embedded systems, of CFI mechanisms. We then present open challenges to the community to help drive future research in this domain. 
    more » « less