Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report the growth of InSe films on semi-insulating GaAs(111)B substrates by molecular beam epitaxy (MBE). Excellent nucleation behavior resulted in the growth of smooth, single-phase InSe films. The dominant polytype was the targeted γ-InSe. Transmission electron microscopy revealed the presence of three bulk polytypes β, γ, and ε-InSe arranged in nanosized domains, which can be interpreted as sequences of stacking faults and rotational twin boundaries of γ-InSe. Additionally, a centrosymmetric Se-In-In-Se layer polymorph with$$P\bar{3}m$$ symmetry was identified as typically not present in bulk. Sizeable differences in their electronic properties were found, which resulted in sizeable electronic disorder arising from the nanoscale polytype arrangement that dominated the electronic transport properties. While MBE is a viable synthesis route towards stabilization of InSe polytypes not present in the bulk, an improved understanding to form the targeted polymorph is required to ultimately inscribe a layer sequence on demand utilizing bottom-up synthesis approaches.more » « less
-
Abstract The piezoelectric and ferroelectric applications of heterovalent ternary materials are not well explored. Epitaxial MgSiN2films are grown at 600 °C on (111)Pt//(001)Al2O3substrates by the reactive sputtering method using metallic Mg and Si under the N2atmosphere. Detailed X‐ray diffraction measurements and transmission electron microscopy observations revealed that the epitaxially grown films on the substrates have a hexagonal wurtzite structure withc‐axis out‐of‐plane orientation. The random occupation of this structure by Mg and Si differs from that of the previously reported structure in which these two cations periodically occupy the cationic sites. However, the lattice spacings closely approximate those that are previously reported, irrespective of the ordering, and they are almost comparable with those of (Al0.8Sc0.2)N. The wide bandgap of >5.0 eV in deposited MgSiN2is compatible with that of AlN and suggests durability against the application of strong external electric fields, possibly to induce polarization switching. In addition, MgSiN2is shown to have piezoelectric properties with an effectived33value of 2.3 pm V−1for the first time. This work demonstrates the compositional expansion of hexagonal wurtzite to heterovalent ternary nitrides for novel piezoelectric materials, whose ferroelectricity is expected.more » « lessFree, publicly-accessible full text available February 6, 2026
-
Abstract Deep learning models based on atomic force microscopy enhance efficiency in inverse design and characterization of materials. However, the limited and imbalanced data of experimental materials that are typically available is a major challenge. Also important is the need to interpret trained models, which are normally complex enough to be uninterpretable by humans. Here, we present a systemic evaluation of transfer learning strategies to accommodate low-data scenarios in materials synthesis and a model latent feature analysis to draw connections to the human-interpretable characteristics of the samples. While we imagine this framework can be used in downstream analysis tasks such as quantitative characterization, we demonstrate the strategies on a multi-material classification task for which the ground truth labels are readily available. Our models show accurate predictions in five classes of transition metal dichalcogenides (TMDs) (MoS2, WS2, WSe2, MoSe2, and Mo-WSe2) with up to 89% accuracy on held-out test samples. Analysis of the latent features reveals a correlation with physical characteristics such as grain density, Difference of Gaussian blob, and local variation. The transfer learning optimization modality and the exploration of the correlation between the latent and physical features provide important frameworks that can be applied to other classes of materials beyond TMDs to enhance the models’ performance and explainability which can accelerate the inverse design of materials for technological applications.more » « less
-
Abstract Two-dimensional (2D) semiconductors are promising candidates for optoelectronic application and quantum information processes due to their inherent out-of-plane 2D confinement. In addition, they offer the possibility of achieving low-dimensional in-plane exciton confinement, similar to zero-dimensional quantum dots, with intriguing optical and electronic properties via strain or composition engineering. However, realizing such laterally confined 2D monolayers and systematically controlling size-dependent optical properties remain significant challenges. Here, we report the observation of lateral confinement of excitons in epitaxially grown in-plane MoSe2quantum dots (~15-60 nm wide) inside a continuous matrix of WSe2monolayer film via a sequential epitaxial growth process. Various optical spectroscopy techniques reveal the size-dependent exciton confinement in the MoSe2monolayer quantum dots with exciton blue shift (12-40 meV) at a low temperature as compared to continuous monolayer MoSe2. Finally, single-photon emission (g2(0) ~ 0.4) was also observed from the smallest dots at 1.6 K. Our study opens the door to compositionally engineered, tunable, in-plane quantum light sources in 2D semiconductors.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Understanding surface stability becomes critical as 2D materials like SnSe are developed for piezoelectric and optical applications. SnSe thin films deposited by molecular beam epitaxy showed no structural changes after a two-year exposure to atmosphere, as confirmed by X-ray diffraction and Raman spectroscopy. X-ray photoelectron spectroscopy and reflectivity show a stable 3.5 nm surface oxide layer, indicating a self-arresting oxidative process. Resistivity measurements show an electrical response dominated by SnSe post-exposure. This work shows that SnSe films can be used in ambient conditions with minimal risk of long-term degradation, which is critical for the development of piezoelectric or photovoltaic devices. Graphical Abstractmore » « less
-
Abstract C–H bond activation enables the facile synthesis of new chemicals. While C–H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C–H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C–C coupling mediated by 2D TMDCs to promote C–H activation and carbon dots synthesis. Our results shed light on 2D materials for C–H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials.more » « less
-
Abstract Achieving spin-pinning at the interface of hetero-bilayer ferromagnet/antiferromagnet structures in conventional exchange bias systems can be challenging due to difficulties in interface control and the weakening of spin-pinning caused by poor interface quality. In this work, we propose an alternative approach to stabilize the exchange interaction at the interface of an uncompensated antiferromagnet by utilizing a gradient of interlayer exchange coupling. We demonstrate this exchange interaction through a designed field training protocol in the odd-layer topological antiferromagnet MnBi2Te4. Our results reveal a remarkable field-trained exchange bias of up to ~ 400 mT, which exhibits high repeatability and can be easily reset by a large training field. Notably, this field-trained exchange bias effect persists even with zero-field initialization, presenting a stark contrast to the traditional field-cooled exchange bias. The highly tunable exchange bias observed in this single antiferromagnet compound, without the need for an additional magnetic layer, provides valuable insight into the exchange interaction mechanism. These findings pave the way for the systematic design of topological antiferromagnetic spintronics.more » « less
-
Abstract Effective control of magnetic phases in two-dimensional magnets would constitute crucial progress in spintronics, holding great potential for future computing technologies. Here, we report a new approach of leveraging tunneling current as a tool for controlling spin states in CrI3. We reveal that a tunneling current can deterministically switch between spin-parallel and spin-antiparallel states in few-layer CrI3, depending on the polarity and amplitude of the current. We propose a mechanism involving nonequilibrium spin accumulation in the graphene electrodes in contact with the CrI3layers. We further demonstrate tunneling current-tunable stochastic switching between multiple spin states of the CrI3tunnel devices, which goes beyond conventional bi-stable stochastic magnetic tunnel junctions and has not been documented in two-dimensional magnets. Our findings not only address the existing knowledge gap concerning the influence of tunneling currents in controlling the magnetism in two-dimensional magnets, but also unlock possibilities for energy-efficient probabilistic and neuromorphic computing.more » « less
-
Abstract Although metal–organic (MO) precursors are widely used in technologically relevant deposition techniques, reports on their temperature-dependent evaporation and decomposition behaviors are scarce. Here, MO precursors of the metals Ti, V, Al, Hf, Zr, Ge, Ta, and Pt were subjected to thermogravimetric analysis to experimentally determine their vapor pressure curves and to gain insight into their temperature-dependent decomposition kinetics. Benzoic acid was used as a calibration standard and vapor pressure curves were extracted from thermogravimetric measurements using the Langmuir equation. The obtained data is used to discuss the suitability of these MO precursors in chemical vapor deposition-based thin film growth approaches in general, and hybrid molecular beam epitaxy in particular. All MOs, except for Ta- and one Ti-based MOs, were deemed suitable for gas inlet systems. The Ta-based MO demonstrated suitability for an effusion cell, while all MOs showed compatibility with cracker usage. Graphical Abstractmore » « less
-
Abstract Dirac and Weyl semimetals are a central topic of contemporary condensed matter physics, and the discovery of new compounds with Dirac/Weyl electronic states is crucial to the advancement of topological materials and quantum technologies. Here we show a widely applicable strategy that uses high configuration entropy to engineer relativistic electronic states. We take theAMnSb2(A= Ba, Sr, Ca, Eu, and Yb) Dirac material family as an example and demonstrate that mixing of Ba, Sr, Ca, Eu and Yb at theAsite generates the compound (Ba0.38Sr0.14Ca0.16Eu0.16Yb0.16)MnSb2(denoted asA5MnSb2), giving access to a polar structure with a space group that is not present in any of the parent compounds.A5MnSb2is an entropy-stabilized phase that preserves its linear band dispersion despite considerable lattice disorder. Although bothA5MnSb2andAMnSb2have quasi-two-dimensional crystal structures, the two-dimensional Dirac states in the pristineAMnSb2evolve into a highly anisotropic quasi-three-dimensional Dirac state triggered by local structure distortions in the high-entropy phase, which is revealed by Shubnikov–de Haas oscillations measurements.more » « less
An official website of the United States government
