A series of $${\left\hbox[ {{{\left\hbox( {{\rm{SnSe}}} \right\hbox)}_{1 \hbox+ \delta }}} \right\hbox]_m}{\left\hbox[ {{\rm{TiS}}{{\rm{e}}_2}} \right\hbox]_2}$$ heterostructure thin films built up from repeating units of m bilayers of SnSe and two layers of TiSe 2 were synthesized from designed precursors. The electronic structure of the films was investigated using X-ray photoelectron spectroscopy for samples with m = 1, 2, 3, and 7 and compared to binary samples of TiSe 2 and SnSe. The observed binding energies of core levels and valence bands of the heterostructures are largely independent of m . For the SnSe layers, we can observe a rigid band shift in the heterostructures compared to the binary, which can be explained by electron transfer from SnSe to TiSe 2 . The electronic structure of the TiSe 2 layers shows a more complicated behavior, as a small shift can be observed in the valence band and Se3 d spectra, but the Ti2 p core level remains at a constant energy. Complementary UV photoemission spectroscopy measurements confirm a charge transfer mechanism where the SnSe layers donate electrons into empty Ti3 d states at the Fermi energy.
more »
« less
Determining the oxidation stability of SnSe under atmospheric exposure
Abstract Understanding surface stability becomes critical as 2D materials like SnSe are developed for piezoelectric and optical applications. SnSe thin films deposited by molecular beam epitaxy showed no structural changes after a two-year exposure to atmosphere, as confirmed by X-ray diffraction and Raman spectroscopy. X-ray photoelectron spectroscopy and reflectivity show a stable 3.5 nm surface oxide layer, indicating a self-arresting oxidative process. Resistivity measurements show an electrical response dominated by SnSe post-exposure. This work shows that SnSe films can be used in ambient conditions with minimal risk of long-term degradation, which is critical for the development of piezoelectric or photovoltaic devices. Graphical Abstract
more »
« less
- PAR ID:
- 10584857
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- MRS Communications
- Volume:
- 14
- Issue:
- 5
- ISSN:
- 2159-6867
- Page Range / eLocation ID:
- 1000 to 1006
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lithium niobate is a promising material for developing quantum acoustic technologies due to its strong piezoelectric effect and availability in the form of crystalline thin films of high quality. However, at radio frequencies and cryogenic temperatures, these resonators are limited by the presence of decoherence and dephasing due to two-level systems. To mitigate these losses and increase device performance, a more detailed picture of the microscopic nature of these loss channels is needed. In this study, we fabricate several lithium niobate acoustic wave resonators and apply different processing steps that modify their surfaces. These treatments include argon ion sputtering, annealing, and acid cleans. We characterize the effects of these treatments using three surface-sensitive measurements: cryogenic microwave spectroscopy measuring density and coupling of TLS to mechanics, X-ray photoelectron spectroscopy and atomic force microscopy. We learn from these studies that, surprisingly, increases of TLS density may accompany apparent improvements in the surface quality as probed by the latter two approaches. Our work outlines the importance that surfaces and fabrication techniques play in altering acoustic resonator coherence, and suggests gaps in our understanding as well as approaches to address them.more » « less
-
Abstract The role of interfaces and the controlling synthesis parameters of graded dealloyed nanoporous metallic materials are investigated, focusing on the dealloying front progression in complex precursor materials with multiple alloy compositions. Specifically, the effects of relative density and chemical potential on the dealloying front in sputtered bilayer copper alloy films are explored with two case studies: Cu–Al/Cu–Al and Cu–Al/Cu–Zn. Cross-sectional scanning electron (SEM) micrographs and energy-dispersive X-ray spectroscopy mapping trace the dealloying front across three time intervals, while top-surface and cross-sectional SEM probes the final dealloyed foam morphology. Final ligament sizes were found to be independent of the synthesis parameters (21–28 nm), due to a combination of fast reaction times and phosphate-inhibited surface diffusion of Cu atoms. The chemical potential gradient yielded faster reaction times, whereas slower reaction times and a higher at.% of Cu in the top layer of precursor material produced a more uniform morphology. Graphical abstractmore » « less
-
MnO(001) thin films were grown on commercial MgO(001) substrates at 520 °C by reactive molecular beam epitaxy (MBE) using Mn vapor and O2-seeded supersonic molecular beams (SMBs) both with and without radio frequency (RF) plasma excitation. For comparison, MnO(001) films were grown by reactive MBE using O2 from a leak valve. X-ray photoelectron spectroscopy confirmed the Mn2+ oxidation state and 10%–15% excess oxygen near the growth surface. Reflection high-energy electron diffraction and x-ray diffraction evidenced that the films were rock salt cubic MnO with very strong (001) orientation. High-angle annular dark field scanning transmission electron microscopy with energy-dispersive x-ray spectroscopy demonstrated abrupt MnO/MgO interfaces and indicated [(001)MnO||(001)MgO] epitaxial growth. Ex situ atomic force microscopy of films deposited without RF excitation revealed smooth growth surfaces. An SMB-grown MnO(001) film was converted to Mn3O4 with strong (110) orientation by post-growth exposure to an RF-discharge (RFD) SMB source providing O atoms; the surface of the resultant film contained elongated pits aligned with the MgO110 directions. In contrast, using the RFD-SMB source for growth resulted in MnO(001) films with elongated growth pits and square pyramidal hillocks aligned along the MgO110 and 100 directions, respectively.more » « less
-
Abstract This study investigates the presence of titanium oxynitride bonds in titanium dioxide (TiO2) thin films grown by atomic layer deposition (ALD) using tetrakis dimethyl amino titanium (TDMAT) and water at temperatures between 150 and 350 °C and its effect on the films’ optical and electrical properties. Compositional analysis using X‐ray photoelectron spectroscopy (XPS) reveals increased incorporation of oxynitride bonds as the process temperature increases. Furthermore, depth profile data demonstrates an increase in the abundance of this type of bonding from the surface to the bulk of the films. Ultraviolet‐visible spectroscopy (UV‐vis) measurements correlate increased visible light absorption for the films with elevated oxynitride incorporation. The optical constants (n, k) of the films show a pronounced dependence on the process temperature that is mirrored in the film conductivity. The detection of oxynitride bonding suggests a secondary reaction pathway in this well‐established ALD process chemistry, that may impact film properties. These findings indicate that the choice of process chemistry and conditions can be used to optimize film properties for optoelectronic applications.more » « less
An official website of the United States government

