skip to main content


Search for: All records

Award ID contains: 2040989

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When pneumonia is not found on a chest X-ray, should the report describe this negative observation or omit it? We argue that this question cannot be answered from the X-ray alone and requires a pragmatic perspective, which captures the communicative goal that radiology reports serve between radiologists and patients. However, the standard image-to-text formulation for radiology report generation fails to incorporate such pragmatic intents. Following this pragmatic perspective, we demonstrate that the indication, which describes why a patient comes for an X-ray, drives the mentions of negative observations. We thus introduce indications as additional input to report generation. With respect to the output, we develop a framework to identify uninferable information from the image, which could be a source of model hallucinations, and limit them by cleaning groundtruth reports. Finally, we use indications and cleaned groundtruth reports to develop pragmatic models, and show that they outperform existing methods not only in new pragmatics-inspired metrics (e.g., +4.3 Negative F1) but also in standard metrics (e.g., +6.3 Positive F1 and +11.0 BLEU-2). 
    more » « less
    Free, publicly-accessible full text available December 10, 2024
  2. While a vast collection of explainable AI (XAI) algorithms has been developed in recent years, they have been criticized for significant gaps with how humans produce and consume explanations. As a result, current XAI techniques are often found to be hard to use and lack effectiveness. In this work, we attempt to close these gaps by making AI explanations selective ---a fundamental property of human explanations---by selectively presenting a subset of model reasoning based on what aligns with the recipient's preferences. We propose a general framework for generating selective explanations by leveraging human input on a small dataset. This framework opens up a rich design space that accounts for different selectivity goals, types of input, and more. As a showcase, we use a decision-support task to explore selective explanations based on what the decision-maker would consider relevant to the decision task. We conducted two experimental studies to examine three paradigms based on our proposed framework: in Study 1, we ask the participants to provide critique-based or open-ended input to generate selective explanations (self-input). In Study 2, we show the participants selective explanations based on input from a panel of similar users (annotator input). Our experiments demonstrate the promise of selective explanations in reducing over-reliance on AI and improving collaborative decision making and subjective perceptions of the AI system, but also paint a nuanced picture that attributes some of these positive effects to the opportunity to provide one's own input to augment AI explanations. Overall, our work proposes a novel XAI framework inspired by human communication behaviors and demonstrates its potential to encourage future work to make AI explanations more human-compatible.

     
    more » « less
    Free, publicly-accessible full text available September 28, 2024
  3. Free, publicly-accessible full text available July 27, 2024
  4. Algorithmic case-based decision support provides examples to help human make sense of predicted labels and aid human in decision-making tasks. Despite the promising performance of supervised learning, representations learned by supervised models may not align well with human intuitions: what models consider as similar examples can be perceived as distinct by humans. As a result, they have limited effectiveness in case-based decision support. In this work, we incorporate ideas from metric learning with supervised learning to examine the importance of alignment for effective decision support. In addition to instance-level labels, we use human-provided triplet judgments to learn human-compatible decision-focused representations. Using both synthetic data and human subject experiments in multiple classification tasks, we demonstrate that such representation is better aligned with human perception than representation solely optimized for classification. Human-compatible representations identify nearest neighbors that are perceived as more similar by humans and allow humans to make more accurate predictions, leading to substantial improvements in human decision accuracies (17.8% in butterfly vs. moth classification and 13.2% in pneumonia classification). 
    more » « less