Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Despite the growing interest in human-AI decision making, experimental studies with domain experts remain rare, largely due to the complexity of working with domain experts and the challenges in setting up realistic experiments. In this work, we conduct an in-depth collaboration with radiologists in prostate cancer diagnosis based on MRI images. Building on existing tools for teaching prostate cancer diagnosis, we develop an interface and conduct two experiments to study how AI assistance and performance feedback shape the decision making of domain experts. In Study 1, clinicians were asked to provide an initial diagnosis (human), then view the AI's prediction, and subsequently finalize their decision (human-AI team). In Study 2 (after a memory wash-out period), the same participants first received aggregated performance statistics from Study 1, specifically their own performance, the AI's performance, and their human-AI team performance, and then directly viewed the AI's prediction before making their diagnosis (i.e., no independent initial diagnosis). These two workflows represent realistic ways that clinical AI tools might be used in practice, where the second study simulates a scenario where doctors can adjust their reliance and trust on AI based on prior performance feedback. Our findings show that, while human-AI teams consistently outperform humans alone, they still underperform the AI due to under-reliance, similar to prior studies with crowdworkers. Providing clinicians with performance feedback did not significantly improve the performance of human-AI teams, although showing AI decisions in advance nudges people to follow AI more. Meanwhile, we observe that the ensemble of human-AI teams can outperform AI alone, suggesting promising directions for human-AI collaboration.more » « lessFree, publicly-accessible full text available June 23, 2026
-
Free, publicly-accessible full text available December 15, 2025
-
The causal capabilities of large language models (LLMs) are a matter of significant debate, with critical implications for the use of LLMs in societally impactful domains such as medicine, science, law, and policy. We conduct a "behavorial" study of LLMs to benchmark their capability in generating causal arguments. Across a wide range of tasks, we find that LLMs can generate text corresponding to correct causal arguments with high probability, surpassing the best-performing existing methods. Algorithms based on GPT-3.5 and 4 outperform existing algorithms on a pairwise causal discovery task (97%, 13 points gain), counterfactual reasoning task (92%, 20 points gain) and event causality (86% accuracy in determining necessary and sufficient causes in vignettes). We perform robustness checks across tasks and show that the capabilities cannot be explained by dataset memorization alone, especially since LLMs generalize to novel datasets that were created after the training cutoff date. That said, LLMs exhibit unpredictable failure modes, and we discuss the kinds of errors that may be improved and what are the fundamental limits of LLM-based answers. Overall, by operating on the text metadata, LLMs bring capabilities so far understood to be restricted to humans, such as using collected knowledge to generate causal graphs or identifying background causal context from natural language. As a result, LLMs may be used by human domain experts to save effort in setting up a causal analysis, one of the biggest impediments to the widespread adoption of causal methods. Given that LLMs ignore the actual data, our results also point to a fruitful research direction of developing algorithms that combine LLMs with existing causal techniques. Code and datasets are available at https://github.com/py-why/pywhy-llm.more » « less
-
We introduce UnStereoEval (USE), a novel framework tailored for investigating gender bias in stereotype-free scenarios. USE defines a sentence-level score based on pretraining data statistics to determine if the sentence contain minimal word-gender associations. To systematically benchmark the fairness of popular language models in stereotype-free scenarios, we utilize USE to automatically generate benchmarks without any gender-related language. By leveraging USE's sentence-level score, we also repurpose prior gender bias benchmarks (Winobias and Winogender) for non-stereotypical evaluation. Surprisingly, we find low fairness across all 28 evaluated models. Concretely, models demonstrate fair behavior in only 9%-41% of stereotype-free sentences, suggesting that bias does not solely stem from the presence of gender-related words. These results raise important questions about where underlying model biases come from and highlight the need for more systematic and comprehensive bias evaluation.more » « less
-
When pneumonia is not found on a chest X-ray, should the report describe this negative observation or omit it? We argue that this question cannot be answered from the X-ray alone and requires a pragmatic perspective, which captures the communicative goal that radiology reports serve between radiologists and patients. However, the standard image-to-text formulation for radiology report generation fails to incorporate such pragmatic intents. Following this pragmatic perspective, we demonstrate that the indication, which describes why a patient comes for an X-ray, drives the mentions of negative observations. We thus introduce indications as additional input to report generation. With respect to the output, we develop a framework to identify uninferable information from the image, which could be a source of model hallucinations, and limit them by cleaning groundtruth reports. Finally, we use indications and cleaned groundtruth reports to develop pragmatic models, and show that they outperform existing methods not only in new pragmatics-inspired metrics (e.g., +4.3 Negative F1) but also in standard metrics (e.g., +6.3 Positive F1 and +11.0 BLEU-2).more » « less
An official website of the United States government

Full Text Available