skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2042672

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Climate change reduces ocean oxygen levels, posing a serious threat to marine ecosystems and their benefits to society. State‐of‐the‐art Earth System Models (ESMs) project an intensification of global oxygen loss in the future, but poorly constrain its patterns and magnitude, with contradictory oxygen gain or loss projected in tropical oceans. We introduce an oxygen water mass framework—grouping waters with similar oxygen concentrations from lowest to highest levels—and separate oxygen changes into two components: thetransformationof oxygen in water masses by biological, chemical, or physical processes along their pathways in “ventilation‐space,” and theredistributionof these water masses in “geographic‐space.” The redistribution of water masses explains the large projection uncertainties in the tropics. ESMs with more realistic representations of water masses provide tighter constraints on future redistribution than less skilled ESMs, leading to over a third more of tropical area exhibiting consistent oxygen projections (58% vs. 22%), and a 30% reduction in model spread for tropical oxygen projections. These higher‐skilled ESMs also project weaker global deoxygenation than less skilled models (median of −2.9 vs. −4.2 Pmol per °C of surface warming) controlled by an increase in global water residence times, and they project a stronger increase in oxygen minimum zone ventilation by ocean mixing. These tighter constraints on future oxygen changes are critical to anticipate and mitigate impacts for ecosystems and inform management and conservation strategies of marine resources. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Abstract The northern Indian Ocean is a hotspot of nitrous oxide (O) emission to the atmosphere. Yet, the direct link between production and emission of O in this region is still poorly constrained, in particular the relative contributions of denitrification, nitrification and ocean transport to the O efflux. Here, we implemented a mechanistically based O cycling module into a regional ocean model of the Indian Ocean to examine how the biological production and transport of O control the spatial variation of O emissions in the basin. The model captures the upper ocean physical and biogeochemical dynamics of the northern Indian Ocean, including vertical and horizontal O distribution observed in situ and regionally integrated O emissions of 286 152 Gg N (annual mean seasonal range) in the lower range of the observation‐based reconstruction (391 237 Gg N ). O emissions are primarily fueled by nitrification in or right below the surface mixed layer (57%, including 26% in the mixed layer and 31% right below), followed by denitrification in the oxygen minimum zones (30%) and O produced elsewhere and transported into the region (13%). Overall, 74% of the emitted O is produced in subsurface and transported to the surface in regions of coastal upwelling, winter convection or turbulent mixing. This spatial decoupling between O production and emissions underscores the need to consider not only changes in environmental factors critical to O production (oxygen, primary productivity etc.) but also shifts in ocean circulation that control emissions when evaluating future changes in global oceanic O emissions. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Abstract Coastal hypoxia—harmfully low levels of oxygen—is a mounting problem that jeopardizes coastal ecosystems and economies. The northern Indian Ocean is particularly susceptible due to human‐induced impacts, vast naturally occurring oxygen minimum zones, and strong variability associated with the seasonal monsoons and interannual Indian Ocean Dipole (IOD). We assess hownaturalfactors influence the risk of coastal hypoxia by combining a large set of oxygen measurements with satellite observations to examine how the IOD amplifies or suppresses seasonal hypoxia tied to the Asian Monsoon. We show that on both seasonal and interannual timescales hypoxia is controlled by wind‐ and coastal Kelvin wave‐driven upwelling of oxygen‐poor waters onto the continental shelf and reinforcing biological feedbacks (increased subsurface oxygen demand). Seasonally, the risk of hypoxia is highest in the western Arabian Sea in summer/fall (71% probability of hypoxia). Major year‐to‐year impacts attributed to the IOD occur during positive phases along the eastern Bay of Bengal (EBoB), where the risk of coastal hypoxia increases from moderate to high in summer/fall (21%–46%) and winter/spring (31%–42%), and along the eastern Arabian Sea (i.e., India, Pakistan) where the risk drops from high to moderate in summer/fall (53%–34%). Strong effects are also seen in the EBoB during negative IOD phases, when the risk reduces from moderate to low year‐round (∼25% to ∼5%). This basin‐scale mapping of hypoxic risk is key to aid national and international efforts that monitor, forecast, and mitigate the impacts of hypoxia on coastal ecosystems and ecosystem services. 
    more » « less
  4. Since 1980, atmospheric pollutants in South Asia and India have dramatically increased in response to industrialization and agricultural development, enhancing the atmospheric deposition of anthropogenic nitrogen in the northern Indian Ocean and potentially promoting primary productivity. Concurrently, ocean warming has increased stratification and limited the supply of nutrients supporting primary productivity. Here, we examine the biogeochemical consequences of increasing anthropogenic atmospheric nitrogen deposition and contrast them with the counteracting effect of warming, using a regional ocean biogeochemical model of the northern Indian Ocean forced with atmospheric nitrogen deposition derived from an Earth System Model. Our results suggest that the 60% recent increase in anthropogenic nitrogen deposition over the northern Indian Ocean provided external reactive nitrogen that only weakly enhanced primary production (+10 mg C.m–2.d–1.yr–1in regions of intense deposition) and secondary production (+4 mg C.m–2.d–1.yr–1). However, we find that locally this enhancement can significantly offset the declining trend in primary production over the last four decades in the central Arabian Sea and western Bay of Bengal, whose magnitude are up to -20 and -10 mg C.m–2.d–1.yr–1respectively. 
    more » « less
    Free, publicly-accessible full text available December 26, 2025
  5. Abstract. The global ocean is losing oxygen with warming. Observations and Earth system model projections, however, suggest that this global ocean deoxygenation does not equate to a simple and systematic expansion of tropical oxygen minimum zones (OMZs). Previous studies have focused on the Pacific Ocean; they showed that the outer OMZ deoxygenates and expands as oxygen supply by advective transport weakens, the OMZ core oxygenates and contracts due to a shift in the composition of the source waters supplied by slow mixing, and in between these two regimes oxygen is redistributed with little effect on OMZ volume. Here, we examine the OMZ response to warming in the Indian Ocean using an ensemble of Earth system model high-emissions scenario experiments from the Coupled Model Intercomparison Project Phase 6. We find a similar expansion–redistribution–contraction response but show that the unique ocean circulation pathways of the Indian Ocean lead to far more prominent OMZ contraction and redistribution regimes than in the Pacific Ocean. As a result, only the outermost volumes (oxygen>180 µmol kg−1) expand. The Indian Ocean experiences a broad oxygenation in the southwest driven by a reduction in waters supplied by the Indonesian Throughflow in favor of high-oxygen waters supplied from the southern Indian Ocean gyre. Models also project a strong localized deoxygenation in the northern Arabian Sea due to the rapid warming and shoaling of marginal sea outflows (Red Sea and Persian Gulf) and increases in local stratification with warming. We extend the existing conceptual framework used to explain the Pacific OMZ response to interpret the response in the Indian Ocean. 
    more » « less