Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Analysis of PRISM and SNOTEL station data paired with USGS streamflow gage data in the western United States shows that, in snow‐dominated mountainous watersheds, streamflow regimes differ between watersheds with karst geology and their non‐karst neighbours. These carbonate aquifers exhibit a spectrum of flow paths encompassing karst conduits, including large fractures or voids that transmit water readily to springs and other surface waters, and matrix flow paths through soils, highly fractured bedrock, or porous media bedrock grains. A well‐connected karst aquifer will discharge a large portion of its accumulated precipitation to surface water via springs and other groundwater flow paths on an annual scale, exhibiting a lagged response to precipitation presenting as a “memory effect” in hydrograph time series. These patterns were observed in the hydrologic records of gaged watersheds with exposed or near‐surface carbonate layers accounting for > 30% of their drainage area. In western snow‐dominated watersheds, where paired streamflow and SNOTEL data are available, analysis of the precipitation and flow time series shows low‐flow volume is strongly related to karst aquifer conditions and winter precipitation when compared to low‐flow volumes present in non‐karst watersheds, which have a complex relationship to multiple driving metrics. Analysis of normalised streamflow and cumulative precipitation in karst watersheds show that low‐flow conditions are highly dependent on the preceding winter precipitation and streamflow in both wet and dry periods. In non‐karst watersheds, increased precipitation primarily impacts high‐flow, spring runoff volumes with no clear relationship to low‐flow periods. When comparing cumulative streamflow and precipitation volumes within each water year and over longer timescales, karst watersheds show the potential filling and draining of large amounts of karst storage, whereas non‐karst watersheds demonstrate a more stable storage regime. Communities in many western US watersheds are dependent on snow‐dominated karst watersheds for their water supply. This analysis, using widely available hydrologic data, can provide insight into the recharge and storage processes within these watersheds, improve our ability to assess current flow regimes, anticipate the impacts of climate change on water availability, and help manage water supplies.more » « less
-
Abstract Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt as well as groundwater connectivity. In mountainous regions with limestone and dolomite geology, bedrock formations can host karst aquifers, which play a significant role in snowmelt–discharge dynamics. However, mapping complex karst features and the resulting surface‐groundwater exchanges at large scales remains infeasible. In this study, timeseries analysis of continuous discharge and specific conductance measurements were combined with gridded snowmelt predictions to characterize seasonal streamflow response and evaluate dominant watershed controls across 12 monitoring sites in a karstified 554 km2watershed in northern Utah, USA. Immense surface water hydrologic variability across subcatchments, years and seasons was linked to geologic controls on groundwater dynamics. Unlike many mountain watersheds, the variability between subcatchments could not be well described by typical watershed properties, including elevation or surficial geology. To fill this gap, a conceptual framework was proposed to characterize subsurface controls on snowmelt–discharge dynamics in karst mountain watersheds in terms of conduit flow direction, aquifer storage capacity and connectivity. This framework requires only readily measured surface water and climatic data from nested monitoring sites and was applied to the study watershed to demonstrate its applicability for evaluating dominant controls and climate sensitivity.more » « less
-
Abstract The Logan River watershed, located in Northern Utah, USA, consists of a relatively pristine, mountainous area that drains to a lower elevation, valley area influenced by both urban development and agriculture. The Logan River Observatory has been collecting aquatic (streamflow and water quality) and climate data throughout the Logan River watershed since 2014. While streamflow measurements are commonly made at the outlets of research watersheds, the Logan River watershed consists of diverse hydrologic, topographic, and geologic settings that require a detailed understanding of streamflow variability over time at many locations. Here, we illustrate: (a) the importance of collecting streamflow time series throughout complex watersheds, and (b) how simple flow balances can provide much needed hydrologic insight into the locations and timing of gains and losses over reaches to guide future investigations.more » « less
-
Hybrid Physically Based and Deep Learning Modeling of a Snow Dominated, Mountainous, Karst WatershedAbstract Snow dominated mountainous karst watersheds are the primary source of water supply in many areas in the western U.S. and worldwide. These watersheds are typically characterized by complex terrain, spatiotemporally varying snow accumulation and melt processes, and duality of flow and storage dynamics because of the juxtaposition of matrix (micropores and small fissures) and karst conduits. As a result, predicting streamflow from meteorological inputs has been challenging due to the inability of physically based or conceptual hydrologic models to represent these unique characteristics. We present a hybrid modeling approach that integrates a physically based, spatially distributed, snow model with a deep learning karst model. More specifically, the high‐resolution snow model captures spatiotemporal variability in snowmelt, and the deep learning model simulates the corresponding response of streamflow as influenced by complex surface and subsurface properties. The deep learning model is based on the Convolutional Long Short‐Term Memory (ConvLSTM) architecture capable of handling spatiotemporal recharge patterns and watershed storage dynamics. The hybrid modeling approach is tested on a watershed in northern Utah with seasonal snow cover and variably karstified carbonate bedrock. The hybrid models were able to simulate streamflow at the watershed outlet with high accuracy. The spatial and temporal recharge and discharge patterns learned by the ConvLSTM model were then examined and compared with known hydrogeologic information. Results suggest that ConvLSTM simulates streamflow with higher accuracy than reference models for the study area and provides insight into spatially influenced hydrologic responses that are unavailable within lumped modeling approaches.more » « less
An official website of the United States government
