skip to main content


Search for: All records

Award ID contains: 2044823

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Introduction

    This study assesses the person-specific impact of extreme heat on low-income households using wearable sensors. The focus is on the intensive and longitudinal assessment of physical activity and sleep with the rising person-specific ambient temperature.

    Methods

    This study recruited 30 participants in a low-income and predominantly Black community in Houston, Texas in August and September of 2022. Each participant wore on his/her wrist an accelerometer that recorded person-specific ambient temperature, sedentary behavior, physical activity intensity (low and moderate to vigorous), and sleep efficiency 24 h over 14 days. Mixed effects models were used to analyze associations among physical activity, sleep, and person-specific ambient temperature.

    Results

    The main findings include increased sedentary time, sleep impairment with the rise of person-level ambient temperature, and the mitigating role of AC.

    Conclusions

    Extreme heat negatively affects physical activity and sleep. The negative consequences are especially critical for those with limited use of AC in lower-income neighborhoods of color. Staying home with a high indoor temperature during hot days can lead to various adverse health outcomes including accelerated cognitive decline, higher cancer risk, and social isolation.

     
    more » « less
  2. Abstract

    The prevalence of data collected on the same set of samples from multiple sources (i.e., multi-view data) has prompted significant development of data integration methods based on low-rank matrix factorizations. These methods decompose signal matrices from each view into the sum of shared and individual structures, which are further used for dimension reduction, exploratory analyses, and quantifying associations across views. However, existing methods have limitations in modeling partially-shared structures due to either too restrictive models, or restrictive identifiability conditions. To address these challenges, we propose a new formulation for signal structures that include partially-shared signals based on grouping the views into so-called hierarchical levels with identifiable guarantees under suitable conditions. The proposed hierarchy leads us to introduce a new penalty, hierarchical nuclear norm (HNN), for signal estimation. In contrast to existing methods, HNN penalization avoids scores and loadings factorization of the signals and leads to a convex optimization problem, which we solve using a dual forward–backward algorithm. We propose a simple refitting procedure to adjust the penalization bias and develop an adapted version of bi-cross-validation for selecting tuning parameters. Extensive simulation studies and analysis of the genotype-tissue expression data demonstrate the advantages of our method over existing alternatives.

     
    more » « less
  3. Abstract

    Continuous glucose monitors (CGMs) are increasingly used to measure blood glucose levels and provide information about the treatment and management of diabetes. Our motivating study contains CGM data during sleep for 174 study participants with type II diabetes mellitus measured at a 5-min frequency for an average of 10 nights. We aim to quantify the effects of diabetes medications and sleep apnea severity on glucose levels. Statistically, this is an inference question about the association between scalar covariates and functional responses observed at multiple visits (sleep periods). However, many characteristics of the data make analyses difficult, including (1) nonstationary within-period patterns; (2) substantial between-period heterogeneity, non-Gaussianity, and outliers; and (3) large dimensionality due to the number of study participants, sleep periods, and time points. For our analyses, we evaluate and compare two methods: fast univariate inference (FUI) and functional additive mixed models (FAMMs). We extend FUI and introduce a new approach for testing the hypotheses of no effect and time invariance of the covariates. We also highlight areas for further methodological development for FAMM. Our study reveals that (1) biguanide medication and sleep apnea severity significantly affect glucose trajectories during sleep and (2) the estimated effects are time invariant.

     
    more » « less
  4. Introduction: Reducing sedentary time is associated with improved postprandial glucose regulation. However, it is not known if the timing of sedentary behavior (i.e., pre- vs. postmeal) differentially impacts postprandial glucose in older adults with overweight or obesity.Methods: In this secondary analysis, older adults (≥65 years) with overweight and obesity (body mass index ≥ 25 kg/m2) wore a continuous glucose monitor and a sedentary behavior monitor continuously in their real-world environments for four consecutive days on four separate occasions. Throughout each 4-day measurement period, participants followed a standardized eucaloric diet and recorded mealtimes in a diary. Glucose, sedentary behavior, and meal intake data were fused using sensor and diary timestamps. Mixed-effect linear regression models were used to evaluate the impact of sedentary timing relative to meal intake.Results: Premeal sedentary time was significantly associated with both the increase from premeal glucose to the postmeal peak (ΔG) and the percent of premeal glucose increase that was recovered 1-hr postmeal glucose peak (%Baseline Recovery;p < .05), with higher levels of premeal sedentary time leading to both a larger ΔGand a smaller %Baseline Recovery. Postmeal sedentary time was significantly associated with the time from meal intake to glucose peak (ΔT;p < .05), with higher levels of postmeal sedentary time leading to a longer time to peak.Conclusions: Pre- versus postmeal sedentary behavior differentially impacts postprandial glucose response in older adults with overweight or obesity, suggesting that the timing of sedentary behavior reductions might play an influential role on long-term glycemic control.

     
    more » « less
  5. Zama, Fabiana (Ed.)
    Despite the world-wide prevalence of hypertension, there is a lack in open-source software for analyzing blood pressure data. The R package bp fills this gap by providing functionality for blood pressure data processing, visualization, and feature extraction. In addition to the comprehensive functionality, the package includes six sample data sets covering continuous arterial pressure data (AP), home blood pressure monitoring data (HBPM) and ambulatory blood pressure monitoring data (ABPM), making it easier for researchers to get started. The R package bp is publicly available on CRAN and at https://github.com/johnschwenck/bp . 
    more » « less