Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Susceptibility to infectious diseases such as COVID-19 depends on how those diseases spread. Many studies have examined the decrease in COVID-19 spread due to reduction in travel. However, less is known about how much functional geographic regions, which capture natural movements and social interactions, limit the spread of COVID-19. To determine boundaries between functional regions, we apply community-detection algorithms to large networks of mobility and social-media connections to construct geographic regions that reflect natural human movement and relationships at the county level in the coterminous United States. We measure COVID-19 case counts, case rates, and case-rate variations across adjacent counties and examine how often COVID-19 crosses the boundaries of these functional regions. We find that regions that we construct using GPS-trace networks and especially commute networks have the lowest COVID-19 case rates along the boundaries, so these regions may reflect natural partitions in COVID-19 transmission. Conversely, regions that we construct from geolocated Facebook friendships and Twitter connections yield less effective partitions. Our analysis reveals that regions that are derived from movement flows are more appropriate geographic units than states for making policy decisions about opening areas for activity, assessing vulnerability of populations, and allocating resources. Our insights are also relevant for policy decisions and public messaging in future emergency situations.more » « less
-
Abstract GIS analyses use moving window methods and hotspot detection to identify point patterns within a given area. Such methods can detect clusters of point events such as crime or disease incidences. Yet, these methods do not account forconnectionsbetween entities, and thus, areas with relatively sparse event concentrations but high network connectivity may go undetected. We develop two scan methods (i.e., moving window or focal processes), EdgeScan and NDScan, for detecting local spatial‐social connections. These methods capture edges and network density, respectively, for each node in a given focal area. We apply methods to a social network of Mafia members in New York City in the 1960s and to a 2019 spatial network of home‐to‐restaurant visits in Atlanta, Georgia. These methods successfully capture focal areas where Mafia members are highly connected and where restaurant visitors are highly local; these results differ from those derived using traditional spatial hotspot analysis using the Getis–Ord Gi* statistic. Finally, we describe how these methods can be adapted to weighted, directed, and bipartite networks and suggest future improvements.more » « less
-
Free, publicly-accessible full text available July 4, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
We mapped Facebook’s Social Connectedness Index (SCI) between adjacent counties in the Contiguous 48 U.S. States. The index is calculated as the number of Facebook friends between counties, divided by the product of active Facebook users in the two counties. The results follow regional science principles that tell us that fewer flows may occur across political (administrative) borders such as state boundaries, and between economic zones, including transition zones between metropolitan areas and hinterland boundaries. We also found low connectivity between adjacent counties that are divided by interstate highways and low connectivity within densely populated areas. High connectivity is found in rural areas, and areas of cultural significance, such as highly African American regions in the U.S. South and isolated regions in Appalachia.more » « less
-
Adams, Benjamin; Griffin, Amy L; Scheider, Simon; McKenzie, Grant (Ed.)Geographic network visualizations often require assigning nodes to geographic coordinates, but this can be challenging when precise node locations are undefined. We explore this problem using U.S. senators as a case study. Each state has two senators, and thus it is difficult to assign clear individual locations. We devise eight different node placement strategies ranging from geometric approaches such as state centroids and longest axis midpoints to data-driven methods using population centers and home office locations. Through expert evaluation, we found that specific coordinates such as senators’ office locations and state centroids are preferred strategies, while random placements and the longest axis method are least favored. The findings also highlight the importance of aligning node placement with research goals and avoiding potentially misleading encodings. This paper contributes to future advancements in geospatial network visualization software development and aims to facilitate more effective exploratory spatial data analysis.more » « less
An official website of the United States government
