These files are supplementary data for this publication: Uhl JH & Leyk S (2022). "Assessing the relationship between morphology and mapping accuracy of built-up areas derived from global human settlement data (https://doi.org/10.1080/15481603.2022.2131192). Each geopackage (GPKG) file contains a set of point locations (in EPSG:3857) attributed with focal accuracy metrics of the GHS-BUILT-R2018A epochs 1975 and 2014, calculated within different levels of spatial support (i.e., focal window size) and for different analytical units (i.e., 30m grid cells, and 3x3 grid cell blocks). Moreover, each location is attributed with focal landscape metrics of built-up areas calculated in the same focal windows using the software Fragstats. These landscape metrics are calculated based on both, GHS built-up areas and reference built-up areas. Reference built-up areas were derived from the Multi-temporal building footprint database for 33 U.S. counties (MTBF-33). These datasets can be used for spatially explicit predictive modeling of the GHS-BUILT R2018A data accuracy using landscape metrics as predictor variables. File nomenclature: lsm_ref_accuracy_sample_2014_1000.gpkg : landscape metrics calculated from the reference built-up areas, for the epoch 2014, using a quadratic focal window of 1,000m x 1,000m. lsm_ghs_accuracy_sample_1975_10000.gpkg : landscape metrics calculated from the ghs built-up areas, for the epoch 1975, using a quadratic focal window of 10,000m x 10,000m. Data processing: Johannes H. Uhl, University of Colorado Boulder (USA), 2020-2022.
more »
« less
Is your neighbor your friend? Scan methods for spatial social network hotspot detection
Abstract GIS analyses use moving window methods and hotspot detection to identify point patterns within a given area. Such methods can detect clusters of point events such as crime or disease incidences. Yet, these methods do not account forconnectionsbetween entities, and thus, areas with relatively sparse event concentrations but high network connectivity may go undetected. We develop two scan methods (i.e., moving window or focal processes), EdgeScan and NDScan, for detecting local spatial‐social connections. These methods capture edges and network density, respectively, for each node in a given focal area. We apply methods to a social network of Mafia members in New York City in the 1960s and to a 2019 spatial network of home‐to‐restaurant visits in Atlanta, Georgia. These methods successfully capture focal areas where Mafia members are highly connected and where restaurant visitors are highly local; these results differ from those derived using traditional spatial hotspot analysis using the Getis–Ord Gi* statistic. Finally, we describe how these methods can be adapted to weighted, directed, and bipartite networks and suggest future improvements.
more »
« less
- Award ID(s):
- 2045271
- PAR ID:
- 10413127
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Transactions in GIS
- Volume:
- 27
- Issue:
- 3
- ISSN:
- 1361-1682
- Page Range / eLocation ID:
- p. 607-625
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Intraspecific variation in morphology and behavior is widespread, especially in species with large distribution ranges. This includes foraging which can vary according to the local resource landscape. How this may be linked to differences in social structure, especially in socially foraging species is less known. Greater spear-nosed bats are well known for their large repertoire of often highly complex social behaviors. In Trinidad, they form stable groups of unrelated females that recruit other members to temporally unpredictable flowering balsa trees. We compared these findings with a dataset of capture data, GPS tracks, and observations collected over six years in a colony in Panamá. We found profound differences in the foraging behavior and group stability ofPhyllostomus hastatusduring the dry season where social behaviors were expected. Female bats did not coordinate commutes to exploit distinct foraging resources as a group. Instead, females commuted individually to very distant foraging areas which overlapped between groups. Linked to this we found groups to be unstable in size over the short and long term. Our findings highlight the large intraspecific variation and indicate a strong influence of the local resource landscape and associated benefits of social foraging on the social structure in these bats and possibly many other animals.more » « less
-
Recent years have witnessed tremendous interest in understanding and predicting information spread on social media platforms such as Twitter, Facebook, etc. Existing diffusion prediction methods primarily exploit the sequential order of influenced users by projecting diffusion cascades onto their local social neighborhoods. However, this fails to capture global social structures that do not explicitly manifest in any of the cascades, resulting in poor performance for inactive users with limited historical activities. In this paper, we present a novel variational autoencoder framework (Inf-VAE) to jointly embed homophily and influence through proximity-preserving social and position-encoded temporal latent variables. To model social homophily, Inf-VAE utilizes powerful graph neural network architectures to learn social variables that selectively exploit the social connections of users. Given a sequence of seed user activations, Inf-VAE uses a novel expressive co-attentive fusion network that jointly attends over their social and temporal variables to predict the set of all influenced users. Our experimental results on multiple real-world social network datasets, including Digg, Weibo, and Stack-Exchanges demonstrate significant gains (22% MAP@10) for Inf-VAE over state-of-the-art diffusion prediction models; we achieve massive gains for users with sparse activities, and users who lack direct social neighbors in seed sets.more » « less
-
Quantification of all types of uncertainty helps to establish reliability in any analysis. This research focuses on uncertainty in two attribute levels of wetland classification and creates visualization tools to guide analysis of spatial uncertainty patterns over several scales. A novel variant of confusion matrix analysis compares the Cowardin and Hydrogeomorphic wetland classification systems, identifying areas and types of misclassification for binary and multivariate categories. The specific focus on uncertainty in the paper refers to categorical consistency, that is, agreement between the two classification systems, rather than comparing observed data to ground truth. Consistency is quantified using confusion matrix analysis. Aggregation across progressive focal windows transforms the confusion matrix into a multiscale data pyramid for quick determination of where attribute uncertainty is highly variant, and at what spatial resolutions classification inconsistencies emerge. The focal pyramids summarize precision, recall, and F1 scores to visualize classification differences across spatial scales. Findings show that the F1 scores appear most informative on agreement about wetlands misclassification at both coarse and fine attribute scales. The pyramid organizes multi-scale uncertainty in a single unified framework and can be “sliced” to view individual focal levels of attribute consistency. Results demonstrate how the confusion matrix can be used to quantify the percentage of a study area in which inconsistencies occur reflecting wetland presence and type. The research provides confusion metrics and display tools to focus attention on specific areas of large data sets where attribute uncertainty patterns may be complex, thus reducing land managers’ workloads by highlighting areas of uncertainty where field checking might be appropriate, and improving analytics by providing visualization tools to quickly see where such areas occur.more » « less
-
User recommendation in healthcare social media by assessing user similarity in heterogeneous networkObjective: The rapid growth of online health social websites has captured a vast amount of healthcare information and made the information easy to access for health consumers. E-patients often use these social websites for informational and emotional support. However, health consumers could be easily overwhelmed by the overloaded information. Healthcare information searching can be very difficult for consumers, not to mention most of them are not skilled information searcher. In this work, we investigate the approaches for measuring user similarity in online health social websites. By recommending similar users to consumers, we can help them to seek informational and emotional support in a more efficient way. Methods: We propose to represent the healthcare social media data as a heterogeneous healthcare information network and introduce the local and global structural approaches for measuring user similarity in a heterogeneous network. We compare the proposed structural approaches with the content-based approach. Results: Experiments were conducted on a data set collected from a popular online health social website,and the results showed that content-based approach performed better for inactive users, while structural approaches performed better for active users. Moreover, global structural approach outperformed local structural approach for all user groups. In addition, we conducted experiments on local and global structural approaches using different weight schemas for the edges in the network. Leverage performed the best for both local and global approaches. Finally, we integrated different approaches and demonstrated that hybrid method yielded better performance than the individual approach. Conclusion: The results indicate that content-based methods can effectively capture the similarity of inactive users who usually have focused interests, while structural methods can achieve better performance when rich structural information is available. Local structural approach only considers direct connections between nodes in the network, while global structural approach takes the indirect connections into account. Therefore, the global similarity approach can deal with sparse networks and capture the implicit similarity between two users. Different approaches may capture different aspects of the similarity relationship between two users. When we combine different methods together, we could achieve a better performance than using each individual method.more » « less
An official website of the United States government
