Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Highly sensitive stimuli‐responsive luminescent materials are crucial for applications in optical sensing, security, and anticounterfeiting. Here, we report two zero‐dimensional (0D) copper(I) halides, (TEP)2Cu2Br4, (TEP)2Cu4Br6, and 1D (TEP)3Ag6Br9, which are comprised of isolated [Cu2Br4]2−, [Cu4Br6]2−, and [Ag6Br9]3−polyanions, respectively, separated by TEP+(tetraethylphosphonium [TEP]) cations. (TEP)2Cu2Br4and (TEP)2Cu4Br6demonstrate greenish‐white and orange‐red emissions, respectively, with near unity photoluminescence quantum yields, while (TEP)3Ag6Br9is a poor light emitter. Optical spectroscopy measurements and density‐functional theory calculations reveal that photoemissions of these compounds originate from self‐trapped excitons due to the excited‐state distortions in the copper(I) halide units. Crystals of Cu(I) halides are radioluminescence active at room temperature under both X‐ and γ‐rays exposure. The light yields up to 15,800 ph/MeV under 662 keV γ‐rays of137Cs suggesting their potential for scintillation applications. Remarkably, (TEP)2Cu2Br4and (TEP)2Cu4Br6are interconvertible through chemical stimuli or reverse crystallization. In addition, both compounds demonstrate luminescence on‐off switching upon thermal stimuli. The sensitivity of (TEP)2Cu2Br4and (TEP)2Cu4Br6to the chemical and thermal stimuli coupled with their ultrabright emission allows their consideration for applications such as solid‐state lighting, sensing, information storage, and anticounterfeiting.more » « less
-
Abstract Herein, a new family of hybrid metal halides, (DMAP)2MBr4(M = Cu, Zn), featuring zero‐dimensional (0D), pseudo‐layered crystal structures containing isolated molecular 4‐dimethylaminopyridinium (DMAP, C7H11N2+) cations and MBr42−tetrahedral anions are reported. (DMAP)2MBr4show remarkable long‐term stability, with no signs of degradation after one year of ambient air exposure. The reported solution synthesis affords large crystals measuring up to 1 cm, which showed significant response to soft 8 keV X‐ray photons when implemented into X‐ray detectors. Furthermore, (DMAP)2ZnBr4demonstrates tunable color light emission properties, which is attributed to the organic molecular units based on our combined experimental and computational results. The measured photoluminescence quantum yield (PLQY) for (DMAP)2ZnBr4is 7.35 %, a remarkable enhancement of emission efficiency as compared to a weak emission from the organic precursor. The inexpensive and earth‐abundant chemical compositions and ease of preparation of the new hybrid metal halides make them promising candidates for optical and electronic applications.more » « less
-
Abstract Copper(I) halides are emerging as attractive alternatives to lead halide perovskites for optical and electronic applications. However, blue‐emitting all‐inorganic copper(I) halides suffer from poor stability and lack of tunability of their photoluminescence (PL) properties. Here, the preparation of silver(I) halides A2AgX3(A = Rb, Cs; X = Cl, Br, I) through solid‐state synthesis is reported. In contrast to the Cu(I) analogs, A2AgX3are broad‐band emitters sensitive to A and X site substitutions. First‐principle calculations show that defect‐bound excitons are responsible for the observed main PL peaks in Rb2AgX3and that self‐trapped excitons (STEs) contribute to a minor PL peak in Rb2AgBr3. This is in sharp contrast to Rb2CuX3, in which the PL is dominated by the emission by STEs. Moreover, the replacement of Cu(I) with Ag(I) in A2AgX3significantly improves photostability and stability in the air under ambient conditions, which enables their consideration for practical applications. Thus, luminescent inks based on A2AgX3are prepared and successfully used in anti‐counterfeiting applications. The excellent light emission properties, significantly improved stability, simple preparation method, and tunable light emission properties demonstrated by A2AgX3suggest that silver(I) halides may be attractive alternatives to toxic lead halide perovskites and unstable copper(I) halides for optical applications.more » « less
-
This review clarifies the confusion regarding similarities and differences between the photoluminescent hybrid organic–inorganic and coordination Cu(i) halides, including their crystal and electronic structures, and optical properties.more » « lessFree, publicly-accessible full text available January 3, 2026
-
All‐inorganic copper(I) halides have recently emerged as attractive alternatives to lead‐based halide perovskites and rare‐earth‐doped inorganics for light emission applications. Most of the newly discovered all‐inorganic Cu(I) halides demonstrate high‐efficiency blue emission albeit with unusually poor tunability of photoluminescence (PL) properties. This work reports the facile preparation of three new copper(I) halides based on the guanidinium cation: (CN3H6)3CuCl4, (CN3H6)7Cu3Br10·3(C3H7NO), and (CN3H6)7Cu3I10·3(C3H7NO). A comprehensive characterization of PL is presented for these novel materials, which have highly tunable, dual blue–yellow emission responsive to both excitation wavelength and vacuum annealing. These have remarkable photoluminescence quantum yield (PLQY) values of up to 34.6% and color‐rendering indices (CRI) up to 97% for tunable, single‐phase white light emission with correlated color temperatures (CCT) ranging from 4851 to 18 921 K, demonstrating the excellent potential of Cu(I) halides for light emission applications.more » « less