skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2046018

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Optimal transport (OT) is a versatile framework for comparing probability measures, with many applications to statistics, machine learning and applied mathematics. However, OT distances suffer from computational and statistical scalability issues to high dimensions, which motivated the study of regularized OT methods like slicing, smoothing and entropic penalty. This work establishes a unified framework for deriving limit distributions of empirical regularized OT distances, semiparametric efficiency of the plug-in empirical estimator and bootstrap consistency. We apply the unified framework to provide a comprehensive statistical treatment of (i) average- and max-sliced $$p$$-Wasserstein distances, for which several gaps in existing literature are closed; (ii) smooth distances with compactly supported kernels, the analysis of which is motivated by computational considerations; and (iii) entropic OT, for which our method generalizes existing limit distribution results and establishes, for the first time, efficiency and bootstrap consistency. While our focus is on these three regularized OT distances as applications, the flexibility of the proposed framework renders it applicable to broad classes of functionals beyond these examples. 
    more » « less
  2. We propose a versatile privacy framework for quantum systems, termed quantum pufferfish privacy (QPP). Inspired by classical pufferfish privacy, our formulation generalizes and addresses limitations of quantum differential privacy by offering flexibility in specifying private information, feasible measurements, and domain knowledge. We show that QPP can be equivalently formulated in terms of the Datta–Leditzky information spectrum divergence, thus providing the first operational interpretation thereof. We reformulate this divergence as a semi-definite program and derive several properties of it, which are then used to prove convexity, composability, and post-processing of QPP mechanisms. Parameters that guarantee QPP of the depolarization mechanism are also derived. We analyze the privacy-utility tradeoff of general QPP mechanisms and, again, study the depolarization mechanism as an explicit instance. The QPP framework is then applied to privacy auditing for identifying privacy violations via a hypothesis testing pipeline that leverages quantum algorithms. Connections to quantum fairness and other quantum divergences are also explored and several variants of QPP are examined. 
    more » « less