skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2046270

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Purpose of ReviewWe review recent advances in algorithmic development and validation for modeling and control of soft robots leveraging the Koopman operator theory. Recent FindingsWe identify the following trends in recent research efforts in this area. (1) The design of lifting functions used in the data-driven approximation of the Koopman operator is critical for soft robots. (2) Robustness considerations are emphasized. Works are proposed to reduce the effect of uncertainty and noise during the process of modeling and control. (3) The Koopman operator has been embedded into different model-based control structures to drive the soft robots. SummaryBecause of their compliance and nonlinearities, modeling and control of soft robots face key challenges. To resolve these challenges, Koopman operator-based approaches have been proposed, in an effort to express the nonlinear system in a linear manner. The Koopman operator enables global linearization to reduce nonlinearities and/or serves as model constraints in model-based control algorithms for soft robots. Various implementations in soft robotic systems are illustrated and summarized in the review. 
    more » « less
  2. Free, publicly-accessible full text available June 18, 2026
  3. Free, publicly-accessible full text available June 18, 2026
  4. Free, publicly-accessible full text available May 22, 2026
  5. Free, publicly-accessible full text available May 22, 2026
  6. Free, publicly-accessible full text available May 1, 2026
  7. 10.1007/978-3-031-47969-4_44 
    more » « less