Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Diffusion models have gained traction as powerful algorithms for synthesizing high-quality images. Central to these algorithms is the diffusion process, a set of equations which maps data to noise in a way that can significantly affect performance. In this paper, we explore whether the diffusionprocess can be learned from data.Our work is grounded in Bayesian inference and seeks to improve log-likelihood estimation by casting the learned diffusion process as an approximate variational posterior that yields a tighter lower bound (ELBO) on the likelihood.A widely held assumption is that the ELBO is invariant to the noise process: our work dispels this assumption and proposes multivariate learned adaptive noise (MuLAN), a learned diffusion process that applies noise at different rates across an image. Our method consists of three components: a multivariate noise schedule, adaptive input-conditional diffusion, and auxiliary variables; these components ensure that the ELBO is no longer invariant to the choice of the noise schedule as in previous works. Empirically, MuLAN sets a new state-of-the-art in density estimation on CIFAR-10 and ImageNet while matching the performance of previous state-of-the-art models with 50% fewer steps. We provide the code, along with a blog post and video tutorial on the project page: https://s-sahoo.com/MuLANmore » « less
-
Variance in predictions across different trained models is a significant, under-explored source of error in fair binary classification. In practice, the variance on some data examples is so large that decisions can be effectively arbitrary. To investigate this problem, we take an experimental approach and make four overarching contributions. We: 1) Define a metric called self-consistency, derived from variance, which we use as a proxy for measuring and reducing arbitrariness; 2) Develop an ensembling algorithm that abstains from classification when a prediction would be arbitrary; 3) Conduct the largest to-date empirical study of the role of variance (vis-a-vis self-consistency and arbitrariness) in fair binary classification; and, 4) Release a toolkit that makes the US Home Mortgage Disclosure Act (HMDA) datasets easily usable for future research. Altogether, our experiments reveal shocking insights about the reliability of conclusions on benchmark datasets. Most fair binary classification benchmarks are close-to-fair when taking into account the amount of arbitrariness present in predictions -- before we even try to apply any fairness interventions. This finding calls into question the practical utility of common algorithmic fairness methods, and in turn suggests that we should reconsider how we choose to measure fairness in binary classification.more » « less
-
This paper presents a method that uses neural networks as a caching mechanism to reduce the variance of Monte Carlo Partial Differential Equation solvers, such as the Walk-on-Spheres algorithm [Sawhney and Crane 2020]. While these Monte Carlo PDE solvers have the merits of being unbiased and discretization-free, their high variance often hinders real-time applications. On the other hand, neural networks can approximate the PDE solution, and evaluating these networks at inference time can be very fast. However, neural-network-based solutions may suffer from convergence difficulties and high bias. Our hybrid system aims to combine these two potentially complementary solutions by training a neural field to approximate the PDE solution using supervision from a WoS solver. This neural field is then used as a cache in the WoS solver to reduce variance during inference. We demonstrate that our neural field training procedure is better than the commonly used self-supervised objectives in the literature. We also show that our hybrid solver exhibits lower variance than WoS with the same computational budget: it is significantly better for small compute budgets and provides smaller improvements for larger budgets, reaching the same performance as WoS in the limit.more » « less
-
Kamalika Chaudhuri, Stefanie Jegelka (Ed.)While low-precision optimization has been widely used to accelerate deep learning, low-precision sampling remains largely unexplored. As a consequence, sampling is simply infeasible in many large-scale scenarios, despite providing remarkable benefits to generalization and uncertainty estimation for neural networks. In this paper, we provide the first study of low-precision Stochastic Gradient Langevin Dynamics (SGLD), showing that its costs can be significantly reduced without sacrificing performance, due to its intrinsic ability to handle system noise. We prove that the convergence of low-precision SGLD with full-precision gradient accumulators is less affected by the quantization error than its SGD counterpart in the strongly convex setting. To further enable low-precision gradient accumulators, we develop a new quantization function for SGLD that preserves the variance in each update step. We demonstrate that low-precision SGLD achieves comparable performance to full-precision SGLD with only 8 bits on a variety of deep learning tasks.more » « less
-
Training example order in SGD has long been known to affect convergence rate. Recent results show that accelerated rates are possible in a variety of cases for permutation-based sample orders, in which each example from the training set is used once before any example is reused. In this paper, we develop a broad condition on the sequence of examples used by SGD that is sufficient to prove tight convergence rates in both strongly convex and non-convex settings. We show that our approach suffices to recover, and in some cases improve upon, previous state-of-the-art analyses for four known example-selection schemes: (1) shuffle once, (2) random reshuffling, (3) random reshuffling with data echoing, and (4) Markov Chain Gradient Descent. Motivated by our theory, we propose two new example-selection approaches. First, using quasi-Monte-Carlo methods, we achieve unprecedented accelerated convergence rates for learning with data augmentation. Second, we greedily choose a fixed scan-order to minimize the metric used in our condition and show that we can obtain more accurate solutions from the same number of epochs of SGD. We conclude by empirically demonstrating the utility of our approach for both convex linear-model and deep learning tasks. Our code is available at: https://github.com/EugeneLYC/qmc-ordering.more » « less
An official website of the United States government

Full Text Available