Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The longwave infrared (LWIR) region of the spectrum spans 8 to 14 μm and enables high-performance sensing and imaging for detection, ranging, and monitoring. Chip-scale LWIR photonics has enormous potential for real-time environmental monitoring, explosive detection, and biomedicine. However, realizing technologies such as precision sensors and broadband frequency combs requires ultra low-loss and low-dispersion components, which have so far remained elusive in this regime. Here, we use native germanium to demonstrate the first high-quality microresonators in the LWIR. These microresonators are coupled to partially-suspended Ge waveguides on a separate glass chip, allowing for the first unambiguous measurements of isolated linewidths. At 8 μm, we measured losses of 0.5 dB/cm and intrinsic quality (Q) factors of 2.5 × 105, nearly two orders of magnitude higher than prior LWIR resonators. Our work portends the development of novel sensing and nonlinear photonics in the LWIR regime.more » « less
- 
            Optical frequency combs with equidistant frequency modes have revolutionized metrology and spectroscopy. The most widespread combs consist of periodic pulse trains generated by mode-locked lasers. However, it has recently been demonstrated that most semiconductor lasers based on Fabry–Pérot cavities, such as quantum well laser diodes, quantum cascade lasers, and quantum dot lasers, can enter an unconventional regime without traditional mode-locking mechanisms. The time-domain profile of these self-locked combs features a frequency-modulated (FM) wave with quasi-continuous-wave intensity and near-linear frequency chirp. The observation of the FM mode of operation in lasers with significantly different dynamics suggested that this mode is a fundamental operating state of semiconductor lasers, stemming from a deeper underlying mechanism. Thanks to recent theoretical and experimental advances, the origin of FM behavior has become clear. In this Perspective, we discuss the current status of FM combs in semiconductor lasers based on Fabry–Pérot cavities, focusing on their physical origin, modeling, characterization, bandwidth enhancement, and potential in future applications.more » « less
- 
            Frequency-modulated (FM) combs based on active cavities like quantum cascade lasers have recently emerged as promising light sources in many spectral regions. Unlike passive modelocking, which generates amplitude modulation using the field’s amplitude, FM comb formation relies on the generation of phase modulation from the field’s phase. They can therefore be regarded as a phase-domain version of passive modelocking. However, while the ultimate scaling laws of passive modelocking have long been known—Haus showed in 1975 that pulses modelocked by a fast saturable absorber have a bandwidth proportional to effective gain bandwidth—the limits of FM combs have been much less clear. Here, we show that FM combs based on fast gain media are governed by the same fundamental limits, producing combs whose bandwidths are linear in the effective gain bandwidth. Not only do we show theoretically that the diffusive effect of gain curvature limits comb bandwidth, but we also show experimentally how this limit can be increased. By adding carefully designed resonant-loss structures that are evanescently coupled to the cavity of a terahertz laser, we reduce the curvature and increase the effective gain bandwidth of the laser, demonstrating bandwidth enhancement. Our results can better enable the creation of active chip-scale combs and be applied to a wide array of cavity geometries.more » « less
- 
            Frequency-modulated (FM) combs with a linearly-chirped frequency and nearly constant intensity occur naturally in certain laser systems; they can be most succinctly described by a nonlinear Schrödinger equation with a phase potential. In this work, we perform a comprehensive analytical study of FM combs in order to calculate their salient properties. We develop a general procedure that allows mean-field theories to be constructed for arbitrary sets of master equations, and as an example consider the case of reflective defects. We derive an expression for the FM chirp of arbitrary Fabry-Perot cavities—important for most realistic lasers—and use perturbation theory to show how they are affected by finite gain bandwidth and linewidth enhancment in fast gain media. Lastly, we show that an eigenvalue formulation of the laser’s dynamics can be useful for characterizing all of the stable states of the laser: the fundamental comb, the continuous-wave solution, and the harmonic states.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
