skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fundamental bandwidth limits and shaping of frequency-modulated combs
Frequency-modulated (FM) combs based on active cavities like quantum cascade lasers have recently emerged as promising light sources in many spectral regions. Unlike passive modelocking, which generates amplitude modulation using the field’s amplitude, FM comb formation relies on the generation of phase modulation from the field’s phase. They can therefore be regarded as a phase-domain version of passive modelocking. However, while the ultimate scaling laws of passive modelocking have long been known—Haus showed in 1975 that pulses modelocked by a fast saturable absorber have a bandwidth proportional to effective gain bandwidth—the limits of FM combs have been much less clear. Here, we show that FM combs based on fast gain media are governed by the same fundamental limits, producing combs whose bandwidths are linear in the effective gain bandwidth. Not only do we show theoretically that the diffusive effect of gain curvature limits comb bandwidth, but we also show experimentally how this limit can be increased. By adding carefully designed resonant-loss structures that are evanescently coupled to the cavity of a terahertz laser, we reduce the curvature and increase the effective gain bandwidth of the laser, demonstrating bandwidth enhancement. Our results can better enable the creation of active chip-scale combs and be applied to a wide array of cavity geometries.  more » « less
Award ID(s):
2046772
PAR ID:
10529983
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
11
Issue:
8
ISSN:
2334-2536
Format(s):
Medium: X Size: Article No. 1094
Size(s):
Article No. 1094
Sponsoring Org:
National Science Foundation
More Like this
  1. Frequency-modulated (FM) combs with a linearly-chirped frequency and nearly constant intensity occur naturally in certain laser systems; they can be most succinctly described by a nonlinear Schrödinger equation with a phase potential. In this work, we perform a comprehensive analytical study of FM combs in order to calculate their salient properties. We develop a general procedure that allows mean-field theories to be constructed for arbitrary sets of master equations, and as an example consider the case of reflective defects. We derive an expression for the FM chirp of arbitrary Fabry-Perot cavities—important for most realistic lasers—and use perturbation theory to show how they are affected by finite gain bandwidth and linewidth enhancment in fast gain media. Lastly, we show that an eigenvalue formulation of the laser’s dynamics can be useful for characterizing all of the stable states of the laser: the fundamental comb, the continuous-wave solution, and the harmonic states. 
    more » « less
  2. Electro-optical modulation of a continuous wave laser is a highly stable way to generate frequency combs, gaining popularity in telecommunication and spectroscopic applications. These combs are generated by modulating non-linear electro-optic crystals with radio frequencies, creating equally spaced side-bands centered around the single-frequency seed laser. Electro-optic frequency comb architectures often choose between optical bandwidth (cascaded GHz combs) or higher mode density (chirped RF generation). This work demonstrates an electro-optic frequency comb with > 120 GHz of bandwidth and an 80 MHz repetition rate. The comb has three cascaded electro-optic modulators driven at sequentially lower harmonics, the last megahertz modulation dictating the repetition rate. This architecture can modulate at any individual harmonic and repetition rate without changes to the components. This comb can be used in any applications where a stable and tunable repetition rate is needed. 
    more » « less
  3. A resonant electro-optic (EO) frequency comb is generated through electro-optic modulation of laser light within an optical resonator. Compared to cavity-less EO combs generated in a single pass through a modulator, resonant EO combs can produce broader spectra with lower radio frequency (RF) power and offer a measure of noise filtering beyond the cavity’s linewidth. Understanding, measuring, and suppressing the sources of phase noise in resonant EO combs is crucial for their applications in metrology, astrophotonics, optical clock generation, and fiber-optic communication. According to the standard phase noise model of frequency combs, only two variables—the common mode offset and repetition rate phase noise—are needed to fully describe the phase noise of comb lines. However, in this work, we demonstrate analytically, numerically, and experimentally that this standard model breaks down for resonant EO combs at short timescales (high frequencies) and under certain comb parameters. Specifically, a third phase noise component emerges. Consequently, resonant EO combs feature qualitatively different phase noise from their cavity-less counterparts and may not exhibit the anticipated noise filtering. A more complete description of the deviations from the standard phase noise model is critical to accurately predict the performance of frequency combs. The description presented here provides foundational insights for improved designs tailored to applications such as supercontinuum generation and optical communication. 
    more » « less
  4. Optical frequency combs have enabled distinct advantages in broadband, high-resolution spectroscopy and precision interferometry. However, quantum mechanics ultimately limits the metrological precision achievable with laser frequency combs. Quantum squeezing has led to substantial measurement improvements with continuous wave lasers, but experiments demonstrating metrological advantage with squeezed combs are less developed. Using the Kerr effect in nonlinear optical fiber, a 1-gigahertz frequency comb centered at 1560 nanometers is amplitude-squeezed by >3 decibels (dB) over a 2.5-terahertz bandwidth. Dual-comb interferometry yields mode-resolved spectroscopy of hydrogen sulfide gas with a signal-to-noise ratio nearly 3 dB beyond the shot-noise limit. The quantum noise reduction leads to a twofold quantum speedup in the determination of gas concentration, with implications for high-speed measurements of multiple species in dynamic chemical environments. 
    more » « less
  5. The Pound–Drever–Hall (PDH) cavity-locking scheme has found prevalent uses in precision optical interferometry and laser frequency stabilization. A form of frequency modulation spectroscopy, PDH enjoys superior signal-to-noise recovery, large acquisition dynamic range, wide servo bandwidth, and robust rejection of spurious effects. However, residual amplitude modulation at the signal frequency, while significantly suppressed, still presents an important concern for further advancing the state-of-the-art performances. Here we present a simplified and improved scheme for PDH using an acousto-optic modulator to generate digital phase reference sidebands instead of the traditionally used electro-optic modulator approach. We demonstrate four key advantages: (1) the carrier and two modulation tones are individually synthesized and easily reconfigured, (2) robust and orthogonal control of the modulated optical field is applied directly to the amplitude and phase quadratures, (3) modulation synthesis, demodulation, and feedback are implemented in a self-contained and easily reproducible electronic unit, and (4) superior active and passive control of residual amplitude modulation is achieved, especially when the carrier power is vanishingly low. These distinct merits stimulate new ideas on how we optimally enact PDH for a wide range of applications. 
    more » « less