Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present the first results of an extensive spectroscopic survey of directly imaged planet host stars. The goal of the survey is the measurement of stellar properties and abundances of 15 elements (including C, O, and S) in these stars. In this work, we present the analysis procedure and the results for an initial set of five host stars, including some very well-known systems. We obtain C/O ratios using a combination of spectral modeling and equivalent-width measurements for all five stars. Our analysis indicates solar C/O ratios for HR 8799 (0.59 ± 0.11), 51 Eri (0.54 ± 0.14), HD 984 (0.63 ± 0.14), and GJ 504 (0.54 ± 0.14). However, we find a supersolar C/O (0.81 ± 0.14) for HD 206893 through spectral modeling. The ratios obtained using the equivalent-width method agree with those obtained using spectral modeling but have higher uncertainties (∼0.3 dex). We also calculate the C/S and O/S ratios, which will help us to better constrain planet formation, especially once planetary sulfur abundances are measured using JWST. Finally, we find no evidence of highly elevated metallicities or abundances for any of our targets, suggesting that a super metal-rich environment is not a prerequisite for large, widely separated gas planet formation. The measurement of elemental abundances beyond carbon and oxygen also provides access to additional abundance ratios, such as Mg/Si, which could aid in further modeling of their giant companions.more » « lessFree, publicly-accessible full text available January 8, 2026
- 
            Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J (Ed.)The Gemini Planet Imager (GPI) is a high-contrast imaging instrument designed to directly detect and char- acterise young, Jupiter-mass exoplanets. After six years of operation at the Gemini South Telescope in Chile, the instrument is being upgraded and moved to the Gemini North Telescope in Hawaii as GPI 2.0. Several improvements have been made to the adaptive optics (AO) system as part of this upgrade. This includes re- placing the current Shack-Hartmann wavefront sensor with a pyramid wavefront sensor (PWFS) and a custom EMCCD. These changes will increase GPI’s sky coverage by accessing fainter targets, improving corrections on fainter stars and allowing faster and ultra-low latency operations on brighter targets. The PWFS subsystem was independently built and tested to verify its performance before being integrated into the GPI 2.0 instrument. This paper will present the pre-integration performance test results, including pupil image quality, throughput and linearity without modulation.more » « less
- 
            Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J (Ed.)The Earth’s atmosphere is comprised of turbulent layers that result in speckled and blurry images from ground- based visible and infrared observations. Adaptive Optics (AO) systems are employed to measure the perturbed wavefront with a wavefront sensor (WFS) and correct for these distortions with a deformable mirror. Therefore, understanding and characterising the atmosphere is crucial for the design and functionality of AO systems. One parameter for characterizing the atmosphere is the atmospheric coherence time, which is a function of the effec- tive wind velocity of the atmosphere. This parameter dictates how fast the AO system needs to correct for the atmosphere. If not fast enough, phenomena such as the wind butterfly effect can occur, hindering high-contrast coronographic imaging. This effect is a result of fast, strong, high-altitude turbulent layers. This paper presents two methods for estimating the effective wind velocity, using pseudo-open loop WFS slopes. The first method uses a spatial-temporal covariance map and the second uses the power spectral density of the defocus term. We show both simulated results and preliminary results from the Gemini Planet Imager AO telemetry.more » « less
- 
            Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J (Ed.)The Gemini Planet Imager (GPI) is a high contrast imaging instrument that aims to detect and characterize extrasolar planets. GPI is being upgraded to GPI 2.0, with several subsystems receiving a re-design to improve its contrast. To enable observations on fainter targets and increase performance on brighter ones, one of the upgrades is to the adaptive optics system. The current Shack-Hartmann wavefront sensor (WFS) is being replaced by a pyramid WFS with an low-noise electron multiplying CCD (EMCCD). EMCCDs are detectors capable of counting single photon events at high speed and high sensitivity. In this work, we characterize the performance of the HNu ̈ 240 EMCCD from Nuvu Cameras, which was custom-built for GPI 2.0. Through our performance evaluation we found that the operating mode of the camera had to be changed from inverted-mode (IMO) to non-inverted mode (NIMO) in order to improve charge diffusion features found in the detector’s images. Here, we characterize the EMCCD’s noise contributors (readout noise, clock-induced charges, dark current) and linearity tests (EM gain, exposure time) before and after the switch to NIMO.more » « less
- 
            Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)The latest generation of high-resolution spectrographs on 10m-class telescopes are designed to pursue challenging science cases. Consequently, ever more precise calibration methods are necessary to enable trail-blazing science methodology. We present the High-Resolution Infrared SPectrograph for Exoplanet Characterization (HISPEC) Calibration Unit (CAL), designed to facilitate challenging science cases such as Doppler imaging of exoplanet atmospheres, precision radial velocity, and high-contrast, high-resolution spectroscopy of nearby exoplanets. CAL builds on the heritage of the pathfinder instrument, the Keck Planet Imager and Characterizer (KPIC)1–3 and utilizes four near-infrared (NIR) light sources encoded with wavelength information that are coupled into singlemode fibers. They can be used synchronously during science observations or asynchronously during daytime calibrations. A uranium hollow cathode lamp (HCL) and a series of gas cells provide absolute calibration from 0.98 μm to 2.46 μm. Two laser frequency combs (LFC) provide stable, time-independent wavelength information during observation, and CAL implements two low-finesse Fabry-Perot etalons as a complement to the LFCs.more » « less
- 
            Ruane, Garreth J (Ed.)HISPEC is a new, high-resolution near-infrared spectrograph being designed for the W.M. Keck II telescope. By offering single-shot, R 100,000 spectroscopy between 0.98 – 2.5 μm, HISPEC will enable spectroscopy of transiting and non-transiting exoplanets in close orbits, direct high-contrast detection and spectroscopy of spatially separated substellar companions, and exoplanet dynamical mass and orbit measurements using precision radial velocity monitoring calibrated with a suite of state-of-the-art absolute and relative wavelength references. MODHIS is the counterpart to HISPEC for the Thirty Meter Telescope and is being developed in parallel with similar scientific goals. In this proceeding, we provide a brief overview of the current design of both instruments, and the requirements for the two spectrographs as guided by the scientific goals for each. We then outline the current science case for HISPEC and MODHIS, with focuses on the science enabled for exoplanet discovery and characterization. We also provide updated sensitivity curves for both instruments, in terms of both signal-to-noise ratio and predicted radial velocity precision.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
