Abstract With the launch of the JWST, we will obtain more precise data for exoplanets than ever before. However, these data can only inform and revolutionize our understanding of exoplanets when placed in the larger context of planet–star formation. Therefore, gaining a deeper understanding of their host stars is equally important and synergistic with the upcoming JWST data. We present detailed chemical abundance profiles of 17 FGK stars that will be observed in exoplanet-focused Cycle 1 JWST observer programs. The elements analyzed (C, N, O, Na, Mg, Si, S, K, and Fe) were specifically chosen as being informative to the composition and formation of planets. Using archival high-resolution spectra from a variety of sources, we perform an LTE equivalent width analysis to derive these abundances. We look to literature sources to correct the abundances for non-LTE effects, especially for O, S, and K, where the corrections are large (often >0.2 dex). With these abundances and the ratios thereof, we will begin to paint clearer pictures of the planetary systems analyzed by this work. With our analysis, we can gain insight into the composition and extent of migration of Hot Jupiters, as well as the possibility of carbon-rich terrestrial worlds. 
                        more » 
                        « less   
                    This content will become publicly available on January 8, 2026
                            
                            A High-resolution Spectroscopic Survey of Directly Imaged Companion Hosts. I. Determination of Diagnostic Stellar Abundances for Planet Formation and Composition
                        
                    
    
            Abstract We present the first results of an extensive spectroscopic survey of directly imaged planet host stars. The goal of the survey is the measurement of stellar properties and abundances of 15 elements (including C, O, and S) in these stars. In this work, we present the analysis procedure and the results for an initial set of five host stars, including some very well-known systems. We obtain C/O ratios using a combination of spectral modeling and equivalent-width measurements for all five stars. Our analysis indicates solar C/O ratios for HR 8799 (0.59 ± 0.11), 51 Eri (0.54 ± 0.14), HD 984 (0.63 ± 0.14), and GJ 504 (0.54 ± 0.14). However, we find a supersolar C/O (0.81 ± 0.14) for HD 206893 through spectral modeling. The ratios obtained using the equivalent-width method agree with those obtained using spectral modeling but have higher uncertainties (∼0.3 dex). We also calculate the C/S and O/S ratios, which will help us to better constrain planet formation, especially once planetary sulfur abundances are measured using JWST. Finally, we find no evidence of highly elevated metallicities or abundances for any of our targets, suggesting that a super metal-rich environment is not a prerequisite for large, widely separated gas planet formation. The measurement of elemental abundances beyond carbon and oxygen also provides access to additional abundance ratios, such as Mg/Si, which could aid in further modeling of their giant companions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2046883
- PAR ID:
- 10599704
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 169
- Issue:
- 2
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- 55
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present the projected rotational velocity and molecular abundances for HD 33632 Ab obtained via Keck Planet Imager and Characterizer (KPIC) high-resolution spectroscopy. HD 33632 Ab is a nearby benchmark brown dwarf companion at a separation of ∼20 au that straddles the L–T transition. Using a forward-modeling framework with on-axis host star spectra, which provides self-consistent substellar atmospheric and retrieval models for HD 33632 Ab, we derive a projected rotational velocity of 53 ± 3 km s−1and carbon monoxide and water mass fractions of logCO = −2.3 ± 0.3 and logH2O = −2.7 ± 0.2, respectively. The inferred carbon-to-oxygen ratio (C/O = 0.58 ± 0.14), molecular abundances, and metallicity ([C/H] = 0.0 ± 0.2 dex) of HD 33632 Ab are consistent with its host star. Although detectable methane opacities are expected in L–T transition objects, we did not recover methane in our KPIC spectra, partly due to the highvsiniand to disequilibrium chemistry at the pressures to which we are sensitive. We parameterize the spin as the ratio of rotation to the breakup velocity, and compare HD 33632 Ab to a compilation of >200 very low-mass objects (M≲ 0.1M⊙) that have spin measurements in the literature. There appears to be no clear trend for the isolated low-mass field objects versus mass, but a tentative trend is identified for low-mass companions and directly imaged exoplanets, similar to previous findings. A larger sample of close-in gas giant exoplanets and brown dwarfs will critically examine our understanding of their formation and evolution through rotation and chemical abundance measurements.more » « less
- 
            Context.Carbon-enhanced metal-poor (CEMP) stars ([C/Fe] > 0.7) are known to exist in large numbers at low metallicity in the Milky Way halo and are important tracers of early Galactic chemical evolution. However, very few stars of this kind have been identified in the classical dwarf spheroidal (dSph) galaxies, and detailed abundances, including neutron-capture element abundances, have only been reported for 13 stars. Aims.We aim to derive detailed abundances of six CEMP stars identified in the Carina dSph and compare the abundances to CEMP stars in other dSph galaxies and the Milky Way halo. This is the largest sample of CEMP stars in a dSph galaxy analysed to date. Methods.One-dimensional local thermodynamic equilibrium (LTE) elemental abundances are derived via equivalent width and spectral synthesis using high-resolution spectra of the six stars obtained with the MIKE spectrograph at Las Campanas Observatory. Results.We derived abundances or upper limits for up to 27 elements from C to Os in the six stars. Our analysis reveals one of the stars to be a CEMP-no star with very low neutron-capture element abundances. In contrast, the other five stars all show enhancements in neutron-capture elements in addition to their carbon enhancement, classifying them as CEMP-sand -r/sstars. The six stars have similarαand iron-peak element abundances to other stars in Carina, except for the CEMP-no star, which shows enhancement in Na, Mg, and Si. We explored the absolute carbon abundances (A(C)) of CEMP stars in dSph galaxies and find similar behaviour to that seen for Milky Way halo CEMP stars, but highlight that CEMP-r/sstars primarily have very highA(C) values. We also compared the neutron-capture element abundances of the CEMP-r/sstars in our sample to recenti-process yields, which provide a good match to the derived abundances.more » « less
- 
            Abstract The elemental and isotopic abundances of volatiles like carbon, oxygen, and nitrogen may trace a planet’s formation location relative to H2O, CO2, CO, NH3, and N2“snowlines,” or the distance from the star at which these volatile elements sublimate. By comparing the C/O and12C/13C ratios measured in giant exoplanet atmospheres to complementary measurements of their host stars, we can determine whether the planet inherited stellar abundances from formation inside the volatile snowlines, or nonstellar C/O and13C enrichment characteristic of formation beyond the snowlines. To date, there are still only a handful of exoplanet systems where we can make a direct comparison of elemental and isotopic CNO abundances between an exoplanet and its host star. Here, we present a12C/13C abundance analysis for host star WASP-77A (whose hot Jupiter’s12C/13C abundance was recently measured). We use MARCS stellar atmosphere models and the radiative transfer code TurboSpectrum to generate synthetic stellar spectra for isotopic abundance calculations. We find a12C/13C ratio of 51 ± 6 for WASP-77A, which is subsolar (∼91) but may still indicate13C enrichment in its companion planet WASP-77A b (12C/13C = 26 ± 16, previously reported). Together with the inventory of carbon and oxygen abundances in both the host and companion planet, these chemical constraints point to WASP-77A b’s formation beyond the H2O and CO2snowlines and provide chemical evidence for the planet’s migration to its current location ∼0.024 au from its host star.more » « less
- 
            Abstract A benchmark brown dwarf (BD) is a BD whose properties (e.g., mass and chemical composition) are precisely and independently measured. Benchmark BDs are valuable in testing theoretical evolutionary tracks, spectral synthesis, and atmospheric retrievals for substellar objects. Here, we report results of atmospheric retrieval on a synthetic spectrum and a benchmark BD, HR 7672 B, with petitRADTRANS . First, we test the retrieval framework on a synthetic PHOENIX BT-Settl spectrum with a solar composition. We show that the retrieved C and O abundances are consistent with solar values, but the retrieved C/O is overestimated by 0.13–0.18, which is about four times higher than the formal error bar. Second, we perform retrieval on HR 7672 B using high spectral-resolution data ( R = 35,000) from the Keck Planet Imager and Characterizer and near-infrared photometry. We retrieve [C/H], [O/H], and C/O to be −0.24 ± 0.05, −0.19 ± 0.04, and 0.52 ± 0.02. These values are consistent with those of HR 7672 A within 1.5 σ . As such, HR 7672 B is among only a few benchmark BDs (along with Gl 570 D and HD 3651 B) that have been demonstrated to have consistent elemental abundances with their primary stars. Our work provides a practical procedure of testing and performing atmospheric retrieval, and sheds light on potential systematics of future retrievals using high- and low-resolution data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
