Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract 4‐ and 5‐coordinate zinc thiolate complexes supported either by bis(carboxamide)pyridine frameworks or by substituted tris(pyrazolyl)borate ligands react with elemental sulfur (S8) following two distinct pathways. Some zinc thiolate moieties insert sulfur atoms to form zinc polysulfanide complexes, while others reduce sulfur and oxidize the thiolate. Here, we compare the effects of ligand electronics, strain, and sterics for selecting the respective reaction pathway. These results show that chelating and electron‐deficient thiolate ligands better stabilize persistent zinc‐bound polysulfanide species.more » « less
-
The interactions between transition metals and sulfur have long been studied for potential applications in catalysis and energy storage and due to the relevance of these motifs in biological and geological systems. Complexes with sulfur-containing ligands can undergo redox transformations centered on sulfur as well as at the metal. Sulfur also readily catenates with other sulfur centers to form polysulfur motifs. Here, the synthesis and structures of notable examples of metal complexes with sulfur-containing ligands (sulfido, polysulfido, and polysulfanido) are described. Aspects of sulfur-centered redox, including spectroscopic and structural considerations, and future research opportunities are highlighted.more » « less
-
Zn II and Fe II chloride complexes of a di(methylthiazolidinyl)pyridine ligand were deprotonated to form the corresponding thiolate complexes supported by redox-active iminopyridine moieties. The thiolate donor groups are nucleophilic and reactive toward oxidants, electrophiles, and protons, while the pendant thiazolidine rings are available for hydrogen bonding. Anion exchange with the weakly-coordinating triflate anion resulted in self-assembly of the iminopyridine complexes to form a trimeric [M 3 S 3 ] cluster. Hydrogen bonding closely associates anions with this trimetallic core.more » « less
-
Nucleophilic 1,2-aminothiol compounds readily reduce typically-insoluble elemental sulfur to polysulfides in both water and nonpolar organic solvents. The resulting anionic polysulfide species are stabilized through hydrogen-bonding interactions with the proximal amine moieties. These interactions can facilitate sulfur transfer to alkenes.more » « less
An official website of the United States government
