- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Wong, Daniel (3)
-
Bhuyan, Laxmi N (1)
-
Jahanshahi, Ali (1)
-
Jia, Ziyang (1)
-
Manzano, Joseph B. (1)
-
Ranganath, Kiran (1)
-
Rezvani, Mohammadreza (1)
-
Song, Shuaiwen Leon (1)
-
Suetterlein, Joshua D. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 18, 2025
-
Jahanshahi, Ali; Rezvani, Mohammadreza; Wong, Daniel (, 2023 IEEE 14th International Green and Sustainable Computing Conference (IGSC))
-
Ranganath, Kiran; Suetterlein, Joshua D.; Manzano, Joseph B.; Song, Shuaiwen Leon; Wong, Daniel (, SC'21: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis)Multi-accelerator servers are increasingly being deployed in shared multi-tenant environments (such as in cloud data centers) in order to meet the demands of large-scale compute-intensive workloads. In addition, these accelerators are increasingly being inter-connected in complex topologies and workloads are exhibiting a wider variety of inter-accelerator communication patterns. However, existing allocation policies are ill-suited for these emerging use-cases. Specifically, this work identifies that multi-accelerator workloads are commonly fragmented leading to reduced bandwidth and increased latency for inter-accelerator communication. We propose Multi-Accelerator Pattern Allocation (MAPA), a graph pattern mining approach towards providing generalized allocation support for allocating multi-accelerator workloads on multi-accelerator servers. We demonstrate that MAPA is able to improve the execution time of multi-accelerator workloads and that MAPA is able to provide generalized benefits across various accelerator topologies. Finally, we demonstrate a speedup of 12.4% for 75th percentile of jobs with the worst case execution time reduced by up to 35% against baseline policy using MAPA.more » « less
An official website of the United States government

Full Text Available