Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Macrotextured silicone breast implants are associated with several complications, ranging from seromas and hematomas to the formation of a rare type of lymphoma, known as breast implant-associated anaplastic large cell lymphoma (BIA-ALCL). The presence of silicone wear debris has been detected within the peri-implant region and fibrotic capsule and histological analyses reveal inflammatory cells surrounding debris particles. However, it is unclear how these debris particles are generated and released from macrotextured implant surfaces, and whether wear debris generation is related to implant stiffness. In this study, we created an accelerated implant aging model to investigate the formation of silicone wear debris produced from self-mated (“shell-shell”) tribological interactions. We created implant-like silicone elastomers from polydimethylsiloxane (PDMS) using Sylgard 184 base:curing agent (10:1, 12:1, and 16:1) and quantified their mechanical properties (E* = 1141 ± 472, 336 ± 20, and 167 ± 53 kPa, respectively). We created macrotextured PDMS samples using the lost-salt technique and compared their self-mated friction coefficient (< µ > = 4.8 ± 3.2, 4.9 ± 1.8, and 6.0 ± 2.3, respectively) and frictional shear stress (τ = 3.1 ± 1.3, 3.2 ± 1.7, and 2.4 ± 1.4 MPa, respectively) to those of the recalled Allergan Biocell macrotextured implant shell (E* = 299 ± 8 kPa, < µ > = 2.2, andτ = 0.8 ± 0.1). Friction coefficient and frictional shear stress were largely insensitive to variations in elastic modulus for macrotextured PDMS samples and recalled implant shells. The stiffest 10:1 PDMS macrotextured sample and the recalled implant shell both generated similar area fractions of silicone wear debris. However, the recalled implant shell released far more particles (> 10×), mainly within the range of 5 to 20 µm2in area. Bone marrow-derived macrophages (BMDMs) were treated with several concentrations of tribologically generated silicone wear debris. We observed widespread phagocytosis of wear debris particles and increasing secretion of inflammatory cytokines with increasing concentration of wear debris particles. Our investigation highlights the importance of avoiding macrotextured surfaces and mitigating wear debris generation from silicone implants to reduce chronic inflammation.more » « less
-
Abstract Atomic force microscopy (AFM) provides the opportunity to perform fundamental and mechanistic observations of complex, dynamic, and transient systems and ultimately link material microstructure and its evolution during tribological interactions. This investigation focuses on the evolution of a dynamic fluoropolymer tribofilm formed during sliding of polytetrafluoroethylene (PTFE) mixed with 5 wt% alpha-phase alumina particles against 304L stainless steel. Sliding was periodically interrupted for AFM topography scans. The average film roughness, the average friction coefficient, and polymer wear rate based on sample height recession were recorded as a function of increasing sliding cycles. Topographical maps suggested tribofilm nucleates in grooves of the steel countersample, spreads, and develops into a uniform film through sliding. Prominent nanoscale features were visible around 10,000 sliding cycles and thereafter. Scanning electron microscopy and energy-dispersive X-ray spectroscopy showed good correlations between these features and aluminum-rich domains, suggesting the presence of alumina particles on the surface.more » « less
-
Poly(acrylamide- co -acrylic acid) (P(AAm- co -AA)) hydrogels are highly tunable and pH-responsive materials frequently used in biomedical applications. The swelling behavior and mechanical properties of these gels have been extensively characterized and are thought to be controlled by the protonation state of the acrylic acid (AA) through the regulation of solution pH. However, their tribological properties have been underexplored. Here, we hypothesized that electrostatics and the protonation state of AA would drive the tribological properties of these polyelectrolyte gels. P(AAm- co -AA) hydrogels were prepared with constant acrylamide (AAm) concentration (33 wt%) and varying AA concentration to control the amount of ionizable groups in the gel. The monomer:crosslinker molar ratio (200:1) was kept constant. Hydrogel swelling, stiffness, and friction behavior were studied by systematically varying the acrylic acid (AA) concentration from 0–12 wt% and controlling solution pH (0.35, 7, 13.8) and ionic strength ( I = 0 or 0.25 M). The stiffness and friction coefficient of bulk hydrogels were evaluated using a microtribometer and borosilicate glass probes as countersurfaces. The swelling behavior and elastic modulus of these polyelectrolyte hydrogels were highly sensitive to solution pH and poorly predicted the friction coefficient ( µ ), which decreased with increasing AA concentration. P(AAm- co -AA) hydrogels with the greatest AA concentrations (12 wt%) exhibited superlubricity ( µ = 0.005 ± 0.001) when swollen in unbuffered, deionized water (pH = 7, I = 0 M) and 0.5 M NaOH (pH = 13.8, I = 0.25 M) ( µ = 0.005 ± 0.002). Friction coefficients generally decreased with increasing AA and increasing solution pH. We postulate that tunable lubricity in P(AAm- co -AA) gels arises from changes in the protonation state of acrylic acid and electrostatic interactions between the probe and hydrogel surface.more » « less
An official website of the United States government
