Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Although considerable research over the past two decades has examined collective learning in environmental governance, much of this scholarship has focused on cases where learning occurred, limiting our understanding of the drivers and barriers to learning. To advance knowledge of what we call the “collective learning continuum,” we compare cases of learning to cases where learning was not found to occur or its effects were “blocked.” Through semi‐structured interviews with key stakeholders in science‐policy forums in the Colorado River Basin, a large and complex river basin in western North America, we examine differences and patterns that explain moments of learning, blocked learning, or non‐learning, drawing insights from the collective learning framework. Our results find various factors that influence learning, blocked learning, and non‐learning. We discover technical and social factors as common drivers of both learning and blocked learning. In contrast, we find more structural factors associated with non‐learning. At the same time, the cases reveal insights about the role of political factors, such as timing, legal constraints, and priorities, which are underdeveloped in the collective learning framework. Overall, these findings advance theoretical knowledge of the collective learning continuum and offer practical insights that may strengthen the coordination of science and management for effective governance within the Basin.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract In complex, polycentric environmental governance systems, actors may choose to collaborate with one another to reduce their collective vulnerability and enhance system function. However, collaboration can be costly, and little evidence exists for how particular collaborative forums impact the broader governance system in which they are embedded. To address this gap, we investigate the role of intermediate collaborative forums, which support collaboration among a subset of system actors, in polycentric governance systems. Empirically, we analyze the structural and functional role of an intermediate collaborative forum called the Arizona Municipal Water Users Association (AMWUA) within the municipal surface water governance network for the Phoenix Metropolitan Area (PMA) in Arizona, United States. To do this, we draw from 21 interviews with water professionals in the PMA, which we analyze through a combination of network analysis and qualitative coding. We find that AMWUA facilitates strong bonding capacities among members, allowing for streamlined bridging to the rest of the network that enhances information processing and advocacy of member needs. Our findings advance theory on the role of collaboration in polycentric systems and inform the design of collaborative institutions to improve environmental governance.more » « less
-
Abstract Collaborative governance has emerged as a promising approach for addressing complex water sustainability issues, with purported benefits from enhanced democracy to improved environmental outcomes. Collaborative processes are often assumed to be inherently more equitable than traditional governance approaches due to their goal of engaging diverse actors in the development of policy and management solutions. However, when collaborative water governance processes ignore issues of politics and power in their design, they risk creating or even exacerbating existing inequities. How, then, can collaborative water governance processes be designed to enhance, rather than undermine, equity? To answer this question, we first conduct an extensive review of the collaborative governance literature to identify common design features of collaborative processes, which each present potential benefits and challenges for actualizing equitable collaborative water governance. After critically discussing these design features, we explore how they are executed through two case studies of collaborative water governance in western North America: groundwater governance reform in California and transnational Colorado River Delta governance. In reflecting on these cases, we chart an agenda for future collaborative water governance research and practice that moves beyond engaging diverse actors to promoting equity among them. This article is categorized under:Human Water > Water GovernanceScience of Water > Water and Environmental ChangeEngineering Water > Planning Watermore » « less
-
Droughts are often long-lasting phenomena, without a distinct start or end and with impacts cascading across sectors and systems, creating long-term legacies. Nevertheless, our current perceptions and management of droughts and their impacts are often event-based, which can limit the effective assessment of drought risks and reduction of drought impacts. Here, we advocate for changing this perspective and viewing drought as a hydrological–ecological–social continuum. We take a systems theory perspective and focus on how “memory” causes feedback and interactions between parts of the interconnected systems at different timescales. We first discuss the characteristics of the drought continuum with a focus on the hydrological, ecological, and social systems separately, and then we study the system of systems. Our analysis is based on a review of the literature and a study of five cases: Chile, the Colorado River basin in the USA, northeast Brazil, Kenya, and the Rhine River basin in northwest Europe. We find that the memories of past dry and wet periods, carried by both bio-physical (e.g. groundwater, vegetation) and social systems (e.g. people, governance), influence how future drought risk manifests. We identify four archetypes of drought dynamics: impact and recovery, slow resilience building, gradual collapse, and high resilience–big shock. The interactions between the hydrological, ecological, and social systems result in systems shifting between these types, which plays out differently in the five case studies. We call for more research on drought preconditions and recovery in different systems, on dynamics cascading between systems and triggering system changes, and on dynamic vulnerability and maladaptation. Additionally, we advocate for more continuous monitoring of drought hazards and impacts, modelling tools that better incorporate memories and adaptation responses, and management strategies that increase societal and institutional memory. This will help us to better deal with the complex hydrological–ecological–social drought continuum and identify effective pathways to adaptation and mitigation.more » « less
An official website of the United States government
