skip to main content


Search for: All records

Award ID contains: 2048164

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Lithium‐ion and sodium‐ion batteries (LIBs and SIBs) are crucial in our shift toward sustainable technologies. In this work, the potential of layered boride materials (MoAlB and Mo2AlB2) as novel, high‐performance electrode materials for LIBs and SIBs, is explored. It is discovered that Mo2AlB2shows a higher specific capacity than MoAlB when used as an electrode material for LIBs, with a specific capacity of 593 mAh g−1achieved after 500 cycles at 200 mA g−1. It is also found that surface redox reactions are responsible for Li storage in Mo2AlB2, instead of intercalation or conversion. Moreover, the sodium hydroxide treatment of MoAlB leads to a porous morphology and higher specific capacities exceeding that of pristine MoAlB. When tested in SIBs, Mo2AlB2exhibits a specific capacity of 150 mAh g−1at 20 mA g−1. These findings suggest that layered borides have potential as electrode materials for both LIBs and SIBs, and highlight the importance of surface redox reactions in Li storage mechanisms.

     
    more » « less
  2. Abstract

    Here, a new family of 2D transition metal carbo‐chalcogenides (TMCCs) is reported, which can be considered a combination of two well‐known families, TM carbides (MXenes) and TM dichalcogenides (TMDCs), at the atomic level. Single sheets are successfully obtained from multilayered Nb2S2C and Ta2S2C using electrochemical lithiation followed by sonication in water. The parent multilayered TMCCs are synthesized using a simple, scalable solid‐state synthesis followed by a topochemical reaction. Superconductivity transition is observed at 7.55 K for Nb2S2C. The delaminated Nb2S2C outperforms both multilayered Nb2S2C and delaminated NbS2as an electrode material for Li‐ion batteries. Ab initio calculations predict the elastic constant of TMCC to be over 50% higher than that of TMDC.

     
    more » « less