skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2048351

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Sequential thermal analysis allows for deconvoluting the refractory nature and complexity of carbon mixtures embedded in mineral matrices for subsequent offline stable carbon and radiocarbon (14C) isotope analyses. Originally developed to separate Holocene from more ancient sedimentary organic matter to improve dating of marine sediments, the Ramped Pyrolysis and Oxidation (RPO) apparatus, or informally, the “dirt burner” is now used to address pressing questions in the broad field of biogeochemistry. The growing interest in the community now necessitates improved handling and procedures for routine analyses of difficult sample types. Here we report on advances in CO2purification during sample processing, modifications to the instrumentation at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility, and introduce sodium bicarbonate procedural standards with differing natural abundance14C signatures for blank assessment. Measurements from different environmental samples are used to compare the procedure to the different generations of sequential thermal analyses. With this study, we aim to improve the standardization of the procedures and prepare this instrumentation for innovations in online stable carbon isotopes and direct AMS-interface measurements in the future. 
    more » « less
  2. Abstract Isla Santa Cruz is a volcanic island located in the central Galápagos Archipelago. The island’s northern and southern flanks are deformed by E–W-trending normal faults not observed on the younger Galápagos shields, and Santa Cruz lacks the large summit calderas that characterize those structures. To construct a chronology of volcanism and deformation on Santa Cruz, we employ40Ar/39Ar geochronology of lavas and3He exposure dating of fault scarps from across the island. The combination of Ar–Ar dating with in situ-produced cosmogenic exposure age data provides a powerful tool to evaluate fault chronologies. The40Ar/39Ar ages indicate that the island has been volcanically active since at least 1.62 ± 0.030 Ma (2SD). Volcanism deposited lavas over the entire island until ~ 200 ka, when it became focused along an E–W-trending summit vent system; all dated lavas < 200 ka were emplaced on the southern flank. Structural observations suggest that the island has experienced two major faulting episodes. Crosscutting relationships of lavas indicate that north flank faults formed after 1.16 ± 0.070 Ma, but likely before 416 ± 36 ka, whereas the faults on the southern flank of the island initiated between 201 ± 37 and 32.6 ± 4.6 ka, based on3He exposure dating of fault surfaces. The data are consistent with a model wherein the northeastern faults are associated with regional extension owing to the young volcano’s location closer to the Galápagos Spreading Center at the time. The second phase of volcanism is contemporaneous with the formation of the southern faults. The expression of this younger, low-volume volcanic phase was likely related to the elongate island morphology established during earlier deformation. The complex feedback between tectonic and volcanic processes responsible for southward spreading along the southern flank likely generated persistent E-W-oriented magmatic intrusions. The formation of the Galápagos Transform Fault and sea-level fluctuations may be the primary causes of eruptive and deformational episodes on Santa Cruz. 
    more » « less
  3. Zhang, Mingming (Ed.)
    We employed two compelling and distinct methods, Fourier Transform Infrared Spectroscopy (FTIR) and Ramped Pyrolysis Oxidation (Ramped PyrOx), to examine the quality of organic matter (OM) stored in four peatlands located along a latitudinal gradient (Tropical (4˚N), Subtropical (27˚N), Boreal (48˚N), and Polar (68˚N)). FTIR was used to quantify the relative abundance of carbohydrates, a relatively labile compound class, and aromatics, which are more recalcitrant, in a sample set of four peat cores. These samples were then prepared using Ramped PyrOx, a second, independent method of determining OM quality that mimics the natural diagenetic maturation of OM that would take place over long timescales. Previous large-scale studies using FTIR to evaluate OM quality have observed that it generally increases with increasing latitude (more carbohydrates, less aromatics). Here, we demonstrate that the Ramped PyrOx approach both validates and complements the FTIR approach. The data stemming from each Ramped PyrOx preparation was input to a model that generates an estimated probability density function of the activation energy (E) required to break the C bonds in the sample. We separated these functions into three fractions (“lowE,” “mediumE,” and “highE”) to create Ramped PyrOx variables that could be quantitatively compared to the compound class abundance data from FTIR. In assessing the agreement between the two methods, we found three significant relationships between Ramped PyrOx and FTIR variables. LowEfractions and carbohydrate content were positively correlated (R2= 0.51) while lowEfractions were negatively correlated with aromatic content (R2= 0.58). MediumEfractions were found to be positively correlated with aromatics (R2= 0.69). 
    more » « less
    Free, publicly-accessible full text available November 14, 2025