skip to main content


Search for: All records

Award ID contains: 2048423

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Extreme heat events are occurring more frequently and with greater intensity due to climate change. They result in increased heat stress to populations causing human health impacts and heat-related deaths. The urban environment can also exacerbate heat stress because of man-made materials and increased population density. Here we investigate the extreme heatwaves in the western U.S. during the summer of 2021. We show the atmospheric scale interactions and spatiotemporal dynamics that contribute to increased temperatures across the region for both urban and rural environments. In 2021, daytime maximum temperatures during heat events in eight major cities were 10–20 °C higher than the 10-year average maximum temperature. We discuss the temperature impacts associated with processes across scales: climate or long-term change, the El Niño–Southern Oscillation, synoptic high-pressure systems, mesoscale ocean/lake breezes, and urban climate (i.e., urban heat islands). Our findings demonstrate the importance of scale interactions impacting extreme heat and the need for holistic approaches in heat mitigation strategies.

     
    more » « less
  2. Abstract

    Accelerated urbanization increases both the frequency and intensity of heatwaves (HW) and urban heat islands (UHIs). An extreme HW event occurred in 2012 summer that caused temperatures of more than 40°C in Chicago, Illinois, USA, which is a highly urbanized city impacted by UHIs. In this study, multiple numerical models, including the High Resolution Land Data Assimilation System (HRLDAS) and Weather Research and Forecasting (WRF) model, were used to simulate the HW and UHI, and their performance was evaluated. In addition, sensitivity testing of three different WRF configurations was done to determine the impact of increasing model complexity in simulating urban meteorology. Model performances were evaluated based on the statistical performance metrics, the application of a multi‐layer urban canopy model (MLUCM) helps WRF to provide the best performance in this study. HW caused rural temperatures to increase by ∼4°C, whereas urban Chicago had lower magnitude increases from the HW (∼2–3°C increases). Nighttime UHI intensity (UHII) ranged from 1.44 to 2.83°C during the study period. Spatiotemporal temperature fields were used to estimate the potential heat‐related exposure and to quantify the Excessive Heat Factor (EHF). The EHF during the HW episode provides a risk map indicating that while urban Chicago had higher heat‐related stress during this event, the rural area also had high risk, especially during nighttime in central Illinois. This study provides a reliable method to estimate spatiotemporal exposures for future studies of heat‐related health impacts.

     
    more » « less