Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Extreme heat events are occurring more frequently and with greater intensity due to climate change. They result in increased heat stress to populations causing human health impacts and heat-related deaths. The urban environment can also exacerbate heat stress because of man-made materials and increased population density. Here we investigate the extreme heatwaves in the western U.S. during the summer of 2021. We show the atmospheric scale interactions and spatiotemporal dynamics that contribute to increased temperatures across the region for both urban and rural environments. In 2021, daytime maximum temperatures during heat events in eight major cities were 10–20 °C higher than the 10-year average maximum temperature. We discuss the temperature impacts associated with processes across scales: climate or long-term change, the El Niño–Southern Oscillation, synoptic high-pressure systems, mesoscale ocean/lake breezes, and urban climate (i.e., urban heat islands). Our findings demonstrate the importance of scale interactions impacting extreme heat and the need for holistic approaches in heat mitigation strategies.more » « less
-
Abstract Accelerated urbanization increases both the frequency and intensity of heatwaves (HW) and urban heat islands (UHIs). An extreme HW event occurred in 2012 summer that caused temperatures of more than 40°C in Chicago, Illinois, USA, which is a highly urbanized city impacted by UHIs. In this study, multiple numerical models, including the High Resolution Land Data Assimilation System (HRLDAS) and Weather Research and Forecasting (WRF) model, were used to simulate the HW and UHI, and their performance was evaluated. In addition, sensitivity testing of three different WRF configurations was done to determine the impact of increasing model complexity in simulating urban meteorology. Model performances were evaluated based on the statistical performance metrics, the application of a multi‐layer urban canopy model (MLUCM) helps WRF to provide the best performance in this study. HW caused rural temperatures to increase by ∼4°C, whereas urban Chicago had lower magnitude increases from the HW (∼2–3°C increases). Nighttime UHI intensity (UHII) ranged from 1.44 to 2.83°C during the study period. Spatiotemporal temperature fields were used to estimate the potential heat‐related exposure and to quantify the Excessive Heat Factor (EHF). The EHF during the HW episode provides a risk map indicating that while urban Chicago had higher heat‐related stress during this event, the rural area also had high risk, especially during nighttime in central Illinois. This study provides a reliable method to estimate spatiotemporal exposures for future studies of heat‐related health impacts.more » « less
-
Abstract. As wildfires intensify and fire seasons lengthen across the western US, the development of models that can predict smoke plume concentrations and track wildfire-induced air pollution exposures has become critical. Wildfire smoke plume height is a key indicator of the vertical placement of plume mass emitted from wildfire-related aerosol sources in climate and air quality models. With advancements in Earth observation (EO) satellites, spaceborne products for aerosol layer height or plume injection height have recently emerged with increased global-scale spatiotemporal resolution. However, to evaluate column radiative effects and refine satellite algorithms, vertical profiles of regionally representative aerosol properties from wildfires need to be measured directly. In this study, we conducted the first comprehensive evaluation of four passive satellite remote-sensing techniques specifically designed for retrieving plume height. We compared these satellite products with the airborne Wyoming Cloud Lidar (WCL) measurements during the 2018 Biomass Burning Flux Measurements of Trace Gases and Aerosols (BB-FLUX) field campaign in the western US. Two definitions, namely, “plume top” and “extinction-weighted mean plume height”, were used to derive the representative heights of wildfire smoke plumes, based on the WCL-derived vertical aerosol extinction coefficient profiles. Using these two definitions, we performed a comparative analysis of multisource satellite-derived plume height products for wildfire smoke. We provide a discussion related to which satellite product is most appropriate for determining plume height characteristics near a fire event or estimating downwind plume rise equivalent height, under multiple aerosol loadings. Our findings highlight the importance of understanding the sensitivity of different passive remote-sensing techniques on space-based wildfire smoke plume height observations, in order to resolve ambiguity surrounding the concept of “effective smoke plume height”. As additional aerosol-observing satellites are planned in the coming years, our results will inform future remote-sensing missions and EO satellite algorithm development. This bridges the gap between satellite observations and plume rise modeling to further investigate the vertical distribution of wildfire smoke aerosols.more » « less
An official website of the United States government
