skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2049100

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract New particle formation (NPF) is a complex atmospheric phenomenon defined by the gas‐to‐particle conversion that leads to the sudden burst and growth in aerosol particles. Although chemical mechanisms for aerosol nucleation and growth are well established, the role of physical processes, such as turbulent mixing, within the atmospheric boundary layer (ABL) is beginning to emerge with recent studies. This study, based on the observations from the 2022 CFACT (Cold Fog Amongst Complex Terrain) field study in the Heber Valley of northern Utah, demonstrates an interconnection between turbulence and the occurrence of NPF. Using a spatially distributed boundary layer instrumentation, a novel feature of CFACT, three case studies depict unique boundary layer conditions that modulate the development of NPF characterized by sustained turbulence and weak intermittent turbulence. Quantitative analysis using in situ measurements and derived variables demonstrate that periods of weak intermittent turbulence hinder particle growth, whereas sustained turbulence helps modulate NPF. These findings provide new insights into the physical drivers of NPF, underscoring the role of turbulence in impacting particle formation with the ABL. 
    more » « less
  2. Abstract Cold fog refers to a type of fog that forms when the temperature is below 0°C. It can be composed of liquid, ice, and mixed‐phase fog particles. Cold fog happens frequently over mountainous terrain in the cold season, but it is difficult to predict. Using observations from the Cold Fog Amongst Complex Terrain (CFACT) field campaign conducted in Heber Valley, Utah, in the western United States during January and February of 2022, this study investigates the meteorological conditions in the surface and boundary layers that support the formation of wintertime ephemeral cold fog in a local area of small‐scale mountain valleys. It is found that fog formation is susceptible to subtleties in forcing conditions and is supported by several factors: (1) established high pressure over the Great Basin with associated local clear skies, calm winds, and a stable boundary layer; (2) near‐surface inversion with saturation near the surface and strong moisture gradient in the boundary layer; (3) warm (above‐freezing) daytime air temperature with a large diurnal range, accompanied with warm soil temperatures during the daytime; (4) a period of increased turbulence kinetic energy (above 0.5 m2·s−2), followed by calm conditions throughout the fog's duration; and (5) supersaturation with respect to ice. Then, the field observations and identified supporting factors for fog formation were utilized to evaluate high‐resolution (˜400 m horizontal grid spacing) Weather Research and Forecasting (WRF) model simulations. Results show that the WRF model accurately simulates the mesoscale conditions facilitating cold‐fog formation but misses some critical surface and atmospheric boundary conditions. The overall results from this paper indicate that these identified factors that support fog formation are vital to accurately forecasting cold‐fog events. At the same time, they are also critical fields for the NWP model validation. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  3. Abstract This study examines the effect of surface moisture flux on fog formation, as it is an essential factor of water vapor distribution that supports fog formation. A one‐way nested large‐eddy simulation embedded in the mesoscale community Weather Research and Forecasting model is used to examine the effect of surface moisture flux on a cold fog event over the Heber Valley on January 16, 2015. Results indicate that large‐eddy simulation successfully reproduces the fog over the mountainous valley, with turbulent mixing of the fog aloft in the valley downward. However, the simulated fog is too dense and has higher humidity, a larger mean surface moisture flux, more extensive liquid water content, and longer duration relative to the observations. The sensitivity of fog simulations to surface moisture flux is then examined. Results indicate that reduction of surface moisture flux leads to fog with a shorter duration and a lower height extension than the original simulation, as the decrease in surface moisture flux impairs water vapor transport from the surface. Consequently, the lower humidity combined with the cold air helps the model reproduce a realistic thin fog close to the observations. The outcomes of this study illustrate that a minor change in moisture flux can have a significant impact on the formation and evolution of fog events over complex terrain, even during the winter when moisture flux is typically very weak. 
    more » « less