skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of near‐surface and boundary‐layer meteorological conditions that support cold‐fog formation using Cold Fog Amongst Complex Terrain field campaign observations
Abstract Cold fog refers to a type of fog that forms when the temperature is below 0°C. It can be composed of liquid, ice, and mixed‐phase fog particles. Cold fog happens frequently over mountainous terrain in the cold season, but it is difficult to predict. Using observations from the Cold Fog Amongst Complex Terrain (CFACT) field campaign conducted in Heber Valley, Utah, in the western United States during January and February of 2022, this study investigates the meteorological conditions in the surface and boundary layers that support the formation of wintertime ephemeral cold fog in a local area of small‐scale mountain valleys. It is found that fog formation is susceptible to subtleties in forcing conditions and is supported by several factors: (1) established high pressure over the Great Basin with associated local clear skies, calm winds, and a stable boundary layer; (2) near‐surface inversion with saturation near the surface and strong moisture gradient in the boundary layer; (3) warm (above‐freezing) daytime air temperature with a large diurnal range, accompanied with warm soil temperatures during the daytime; (4) a period of increased turbulence kinetic energy (above 0.5 m2·s−2), followed by calm conditions throughout the fog's duration; and (5) supersaturation with respect to ice. Then, the field observations and identified supporting factors for fog formation were utilized to evaluate high‐resolution (˜400 m horizontal grid spacing) Weather Research and Forecasting (WRF) model simulations. Results show that the WRF model accurately simulates the mesoscale conditions facilitating cold‐fog formation but misses some critical surface and atmospheric boundary conditions. The overall results from this paper indicate that these identified factors that support fog formation are vital to accurately forecasting cold‐fog events. At the same time, they are also critical fields for the NWP model validation.  more » « less
Award ID(s):
2049100
PAR ID:
10600102
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
wiley
Date Published:
Journal Name:
Quarterly Journal of the Royal Meteorological Society
Volume:
150
Issue:
764
ISSN:
0035-9009
Page Range / eLocation ID:
4329 to 4347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study examines the effect of surface moisture flux on fog formation, as it is an essential factor of water vapor distribution that supports fog formation. A one‐way nested large‐eddy simulation embedded in the mesoscale community Weather Research and Forecasting model is used to examine the effect of surface moisture flux on a cold fog event over the Heber Valley on January 16, 2015. Results indicate that large‐eddy simulation successfully reproduces the fog over the mountainous valley, with turbulent mixing of the fog aloft in the valley downward. However, the simulated fog is too dense and has higher humidity, a larger mean surface moisture flux, more extensive liquid water content, and longer duration relative to the observations. The sensitivity of fog simulations to surface moisture flux is then examined. Results indicate that reduction of surface moisture flux leads to fog with a shorter duration and a lower height extension than the original simulation, as the decrease in surface moisture flux impairs water vapor transport from the surface. Consequently, the lower humidity combined with the cold air helps the model reproduce a realistic thin fog close to the observations. The outcomes of this study illustrate that a minor change in moisture flux can have a significant impact on the formation and evolution of fog events over complex terrain, even during the winter when moisture flux is typically very weak. 
    more » « less
  2. Abstract New particle formation (NPF) is a complex atmospheric phenomenon defined by the gas‐to‐particle conversion that leads to the sudden burst and growth in aerosol particles. Although chemical mechanisms for aerosol nucleation and growth are well established, the role of physical processes, such as turbulent mixing, within the atmospheric boundary layer (ABL) is beginning to emerge with recent studies. This study, based on the observations from the 2022 CFACT (Cold Fog Amongst Complex Terrain) field study in the Heber Valley of northern Utah, demonstrates an interconnection between turbulence and the occurrence of NPF. Using a spatially distributed boundary layer instrumentation, a novel feature of CFACT, three case studies depict unique boundary layer conditions that modulate the development of NPF characterized by sustained turbulence and weak intermittent turbulence. Quantitative analysis using in situ measurements and derived variables demonstrate that periods of weak intermittent turbulence hinder particle growth, whereas sustained turbulence helps modulate NPF. These findings provide new insights into the physical drivers of NPF, underscoring the role of turbulence in impacting particle formation with the ABL. 
    more » « less
  3. Abstract. Accurate boundary layer temperature and humidity profiles are crucial for successful forecasting of fog, and accurate retrievals of liquid water path are important for understanding the climatological significance of fog. Passive ground-based remote sensing systems such as microwave radiometers (MWRs) and infrared spectrometers like the Atmospheric Emitted Radiance Interferometer (AERI), which measures spectrally resolved infrared radiation (3.3 to 19.2 µm), can retrieve both thermodynamic profiles and liquid water path. Both instruments are capable of long-term unattended operation and have the potential to support operational forecasting. Here we compare physical retrievals of boundary layer thermodynamic profiles and liquid water path during 12 cases of thin (LWP<40 g m−2) supercooled radiation fog from an MWR and an AERI collocated in central Greenland. We compare both sets of retrievals to in-situ measurements from radiosondes and surface-based temperature and humidity sensors. The retrievals based on AERI observations accurately capture shallow surface-based temperature inversions (0–10 m a.g.l.) with lapse rates of up to −1.2 ∘C m−1, whereas the strength of the surface-based temperature inversions retrieved from MWR observations alone are uncorrelated with in-situ measurements, highlighting the importance of constraining MWR thermodynamic profile retrievals with accurate surface meteorological data. The retrievals based on AERI observations detect fog onset (defined by a threshold in liquid water path) earlier than those based on MWR observations by 25 to 185 min. We propose that, due to the high sensitivity of the AERI instrument to near-surface temperature and small changes in liquid water path, the AERI (or an equivalent infrared spectrometer) could be a useful instrument for improving fog monitoring and nowcasting, particularly for cases of thin radiation fog under otherwise clear skies, which can have important radiative impacts at the surface. 
    more » « less
  4. Abstract. Radiation fogs at Summit Station, Greenland (72.58&thinsp;N,38.48&thinsp;W; 3210&thinsp;m&thinsp;a.s.l.), are frequently reported by observers. Thefogs are often accompanied by fogbows, indicating the particles are composedof liquid; and because of the low temperatures at Summit, this liquid issupercooled. Here we analyze the formation of these fogs as well as theirphysical and radiative properties. In situ observations of particle size anddroplet number concentration were made using scattering spectrometers near 2 and 10&thinsp;m height from 2012 to 2014. These data are complemented bycolocated observations of meteorology, turbulent and radiative fluxes, andremote sensing. We find that liquid fogs occur in all seasons with thehighest frequency in September and a minimum in April. Due to thecharacteristics of the boundary-layer meteorology, the fogs are elevated,forming between 2 and 10&thinsp;m, and the particles then fall toward the surface.The diameter of mature particles is typically 20–25&thinsp;µm in summer.Number concentrations are higher at warmer temperatures and, thus, higher insummer compared to winter. The fogs form at temperatures as warm as −5&thinsp;C, while the coldest form at temperatures approaching −40&thinsp;C. Facilitated by the elevated condensation, in winter two-thirds offogs occurred within a relatively warm layer above the surface when thenear-surface air was below −40&thinsp;C, as cold as −57&thinsp;C,which is too cold to support liquid water. This implies that fog particlessettling through this layer of cold air freeze in the air column beforecontacting the surface, thereby accumulating at the surface as ice withoutriming. Liquid fogs observed under otherwise clear skies annually imparted1.5&thinsp;W&thinsp;m−2 of cloud radiative forcing (CRF). While this is a smallcontribution to the surface radiation climatology, individual events areinfluential. The mean CRF during liquid fog events was 26&thinsp;W&thinsp;m−2, andwas sometimes much higher. An extreme case study was observed toradiatively force 5&thinsp;C of surface warming during the coldest partof the day, effectively damping the diurnal cycle. At lower elevations ofthe ice sheet where melting is more common, such damping could signal a rolefor fogs in preconditioning the surface for melting later in the day. 
    more » « less
  5. Abstract This study investigates cloud formation and transitions in cloud types at Summit, Greenland, during 16–22 September 2010, when a warm, moist air mass was advected to Greenland from lower latitudes. During this period there was a sharp transition between high ice clouds and the formation of a lower stratocumulus deck at Summit. A regional mesoscale model is used to investigate the air masses that form these cloud systems. It is found that the high ice clouds form in originally warm, moist air masses that radiatively cool while being transported to Summit. A sensitivity study removing high ice clouds demonstrates that the primary impact of these clouds at Summit is to reduce cloud liquid water embedded within the ice cloud and water vapor in the boundary layer due to vapor deposition on snow. The mixed-phase stratocumulus clouds form at the base of cold, dry air masses advected from the northwest above 4 km. The net surface radiative fluxes during the stratocumulus period are at least 20 W m−2 larger than during the ice cloud period, indicating that, in seasons other than summer, cold, dry air masses advected to Summit above the boundary layer may radiatively warm the top of the Greenland Ice Sheet more effectively than warm, moist air masses advected from lower latitudes. 
    more » « less