skip to main content


Search for: All records

Award ID contains: 2051888

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Data are available for download at http://arcticdata.io/data/10.18739/A2KW57K57 Permafrost can be indirectly detected via remote sensing techniques through the presence of ice-wedge polygons, which are a ubiquitous ground surface feature in tundra regions. Ice-wedge polygons form through repeated annual cracking of the ground during cold winter days. In spring, the cracks fill in with snowmelt water, creating ice wedges, which are connected across the landscape in an underground network and that can grow to several meters depth and width. The growing ice wedges push the soil upwards, forming ridges that bound low-centered ice-wedge polygons. If the top of the ice wedge melts, the ground subsides and the ridges become troughs and the ice-wedge polygons become high-centered. Here, a Convolutional Neural Network is used to map the boundaries of individual ice-wedge polygons based on high-resolution commercial satellite imagery obtained from the Polar Geospatial Center. This satellite imagery used for the detection of ice-wedge polygons represent years between 2001 and 2021, so this dataset represents ice-wedge polygons mapped from different years. This dataset does not include a time series (i.e. same area mapped more than once). The shapefiles are masked, reprojected, and processed into GeoPackages with calculated attributes for each ice-wedge polygon such as circumference and width. The GeoPackages are then rasterized with new calculated attributes for ice-wedge polygon coverage such a coverage density. This release represents the region classified as “high ice” by Brown et al. 1997. The dataset is available to explore on the Permafrost Discovery Gateway (PDG), an online platform that aims to make big geospatial permafrost data accessible to enable knowledge-generation by researchers and the public. The PDG project creates various pan-Arctic data products down to the sub-meter and monthly resolution. Access the PDG Imagery Viewer here: https://arcticdata.io/catalog/portals/permafrost Data limitations in use: This data is part of an initial release of the pan-Arctic data product for ice-wedge polygons, and it is expected that there are constraints on its accuracy and completeness. Users are encouraged to provide feedback regarding how they use this data and issues they encounter during post-processing. Please reach out to the dataset contact or a member of the PDG team via support@arcticdata.io. 
    more » « less
  2. null (Ed.)
    Very high spatial resolution commercial satellite imagery can inform observation, mapping, and documentation of micro-topographic transitions across large tundra regions. The bridging of fine-scale field studies with pan-Arctic system assessments has until now been constrained by a lack of overlap in spatial resolution and geographical coverage. This likely introduced biases in climate impacts on, and feedback from the Arctic region to the global climate system. The central objective of this exploratory study is to develop an object-based image analysis workflow to automatically extract ice-wedge polygon troughs from very high spatial resolution commercial satellite imagery. We employed a systematic experiment to understand the degree of interoperability of knowledge-based workflows across distinct tundra vegetation units—sedge tundra and tussock tundra—focusing on the same semantic class. In our multi-scale trough modelling workflow, we coupled mathematical morphological filtering with a segmentation process to enhance the quality of image object candidates and classification accuracies. Employment of the master ruleset on sedge tundra reported classification accuracies of correctness of 0.99, completeness of 0.87, and F1 score of 0.92. When the master ruleset was applied to tussock tundra without any adaptations, classification accuracies remained promising while reporting correctness of 0.87, completeness of 0.77, and an F1 score of 0.81. Overall, results suggest that the object-based image analysis-based trough modelling workflow exhibits substantial interoperability across the terrain while producing promising classification accuracies. From an Arctic earth science perspective, the mapped troughs combined with the ArcticDEM can allow hydrological assessments of lateral connectivity of the rapidly changing Arctic tundra landscape, and repeated mapping can allow us to track fine-scale changes across large regions and that has potentially major implications on larger riverine systems. 
    more » « less