skip to main content


Title: An Object-Based Approach for Mapping Tundra Ice-Wedge Polygon Troughs from Very High Spatial Resolution Optical Satellite Imagery
Very high spatial resolution commercial satellite imagery can inform observation, mapping, and documentation of micro-topographic transitions across large tundra regions. The bridging of fine-scale field studies with pan-Arctic system assessments has until now been constrained by a lack of overlap in spatial resolution and geographical coverage. This likely introduced biases in climate impacts on, and feedback from the Arctic region to the global climate system. The central objective of this exploratory study is to develop an object-based image analysis workflow to automatically extract ice-wedge polygon troughs from very high spatial resolution commercial satellite imagery. We employed a systematic experiment to understand the degree of interoperability of knowledge-based workflows across distinct tundra vegetation units—sedge tundra and tussock tundra—focusing on the same semantic class. In our multi-scale trough modelling workflow, we coupled mathematical morphological filtering with a segmentation process to enhance the quality of image object candidates and classification accuracies. Employment of the master ruleset on sedge tundra reported classification accuracies of correctness of 0.99, completeness of 0.87, and F1 score of 0.92. When the master ruleset was applied to tussock tundra without any adaptations, classification accuracies remained promising while reporting correctness of 0.87, completeness of 0.77, and an F1 score of 0.81. Overall, results suggest that the object-based image analysis-based trough modelling workflow exhibits substantial interoperability across the terrain while producing promising classification accuracies. From an Arctic earth science perspective, the mapped troughs combined with the ArcticDEM can allow hydrological assessments of lateral connectivity of the rapidly changing Arctic tundra landscape, and repeated mapping can allow us to track fine-scale changes across large regions and that has potentially major implications on larger riverine systems.  more » « less
Award ID(s):
1929170 1721030 1820883 2052107 1927872 1722572 2051888
PAR ID:
10212890
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
13
Issue:
4
ISSN:
2072-4292
Page Range / eLocation ID:
558
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We developed a high-throughput mapping workflow, which centers on deep learning (DL) convolutional neural network (CNN) algorithms on high-performance distributed computing resources, to automatically characterize ice-wedge polygons (IWPs) from sub-meter resolution commercial satellite imagery. We applied a region-based CNN object instance segmentation algorithm, namely the Mask R-CNN, to automatically detect and classify IWPs in North Slope of Alaska. The central goal of our study was to systematically expound the DLCNN model interoperability across varying tundra types (sedge, tussock sedge, and non-tussock sedge) and image scene complexities to refine the understanding of opportunities and challenges for regional-scale mapping applications. We corroborated quantitative error statistics along with detailed visual inspections to gauge the IWP detection accuracies. We found promising model performances (detection accuracies: 89% to 96% and classification accuracies: 94% to 97%) for all candidate image scenes with varying tundra types. The mapping workflow discerned the IWPs by exhibiting low absolute mean relative error (AMRE) values (0.17–0.23). Results further suggest the importance of increasing the variability of training samples when practicing transfer-learning strategy to map IWPs across heterogeneous tundra cover types. Overall, our findings demonstrate the robust performances of IWPs mapping workflow in multiple tundra landscapes.

     
    more » « less
  2. High-spatial-resolution satellite imagery enables transformational opportunities to observe, map, and document the micro-topographic transitions occurring in Arctic polygonal tundra at multiple spatial and temporal frequencies. Knowledge discovery through artificial intelligence, big imagery, and high-performance computing (HPC) resources is just starting to be realized in Arctic permafrost science. We have developed a novel high-performance image-analysis framework—Mapping Application for Arctic Permafrost Land Environment (MAPLE)—that enables the integration of operational-scale GeoAI capabilities into Arctic permafrost modeling. Interoperability across heterogeneous HPC systems and optimal usage of computational resources are key design goals of MAPLE. We systematically compared the performances of four different MAPLE workflow designs on two HPC systems. Our experimental results on resource utilization, total time to completion, and overhead of the candidate designs suggest that the design of an optimal workflow largely depends on the HPC system architecture and underlying service-unit accounting model. 
    more » « less
  3. Deep learning (DL) convolutional neural networks (CNNs) have been rapidly adapted in very high spatial resolution (VHSR) satellite image analysis. DLCNN-based computer visions (CV) applications primarily aim for everyday object detection from standard red, green, blue (RGB) imagery, while earth science remote sensing applications focus on geo object detection and classification from multispectral (MS) imagery. MS imagery includes RGB and narrow spectral channels from near- and/or middle-infrared regions of reflectance spectra. The central objective of this exploratory study is to understand to what degree MS band statistics govern DLCNN model predictions. We scaffold our analysis on a case study that uses Arctic tundra permafrost landform features called ice-wedge polygons (IWPs) as candidate geo objects. We choose Mask RCNN as the DLCNN architecture to detect IWPs from eight-band Worldview-02 VHSR satellite imagery. A systematic experiment was designed to understand the impact on choosing the optimal three-band combination in model prediction. We tasked five cohorts of three-band combinations coupled with statistical measures to gauge the spectral variability of input MS bands. The candidate scenes produced high model detection accuracies for the F1 score, ranging between 0.89 to 0.95, for two different band combinations (coastal blue, blue, green (1,2,3) and green, yellow, red (3,4,5)). The mapping workflow discerned the IWPs by exhibiting low random and systematic error in the order of 0.17–0.19 and 0.20–0.21, respectively, for band combinations (1,2,3). Results suggest that the prediction accuracy of the Mask-RCNN model is significantly influenced by the input MS bands. Overall, our findings accentuate the importance of considering the image statistics of input MS bands and careful selection of optimal bands for DLCNN predictions when DLCNN architectures are restricted to three spectral channels. 
    more » « less
  4. Retrogressive thaw slumps (RTS) are considered one of the most dynamic permafrost disturbance features in the Arctic. Sub-meter resolution multispectral imagery acquired by very high spatial resolution (VHSR) commercial satellite sensors offer unique capacities in capturing the morphological dynamics of RTSs. The central goal of this study is to develop a deep learning convolutional neural net (CNN) model (a UNet-based workflow) to automatically detect and characterize RTSs from VHSR imagery. We aimed to understand: (1) the optimal combination of input image tile size (array size) and the CNN network input size (resizing factor/spatial resolution) and (2) the interoperability of the trained UNet models across heterogeneous study sites based on a limited set of training samples. Hand annotation of RTS samples, CNN model training and testing, and interoperability analyses were based on two study areas from high-Arctic Canada: (1) Banks Island and (2) Axel Heiberg Island and Ellesmere Island. Our experimental results revealed the potential impact of image tile size and the resizing factor on the detection accuracies of the UNet model. The results from the model transferability analysis elucidate the effects on the UNet model due the variability (e.g., shape, color, and texture) associated with the RTS training samples. Overall, study findings highlight several key factors that we should consider when operationalizing CNN-based RTS mapping over large geographical extents. 
    more » « less
  5. The microtopography associated with ice-wedge polygons governs many aspects of Arctic ecosystem, permafrost, and hydrologic dynamics from local to regional scales owing to the linkages between microtopography and the flow and storage of water, vegetation succession, and permafrost dynamics. Wide-spread ice-wedge degradation is transforming low-centered polygons into high-centered polygons at an alarming rate. Accurate data on spatial distribution of ice-wedge polygons at a pan-Arctic scale are not yet available, despite the availability of sub-meter-scale remote sensing imagery. This is because the necessary spatial detail quickly produces data volumes that hamper both manual and semi-automated mapping approaches across large geographical extents. Accordingly, transforming big imagery into ‘science-ready’ insightful analytics demands novel image-to-assessment pipelines that are fueled by advanced machine learning techniques and high-performance computational resources. In this exploratory study, we tasked a deep-learning driven object instance segmentation method (i.e., the Mask R-CNN) with delineating and classifying ice-wedge polygons in very high spatial resolution aerial orthoimagery. We conducted a systematic experiment to gauge the performances and interoperability of the Mask R-CNN across spatial resolutions (0.15 m to 1 m) and image scene contents (a total of 134 km2) near Nuiqsut, Northern Alaska. The trained Mask R-CNN reported mean average precisions of 0.70 and 0.60 at thresholds of 0.50 and 0.75, respectively. Manual validations showed that approximately 95% of individual ice-wedge polygons were correctly delineated and classified, with an overall classification accuracy of 79%. Our findings show that the Mask R-CNN is a robust method to automatically identify ice-wedge polygons from fine-resolution optical imagery. Overall, this automated imagery-enabled intense mapping approach can provide a foundational framework that may propel future pan-Arctic studies of permafrost thaw, tundra landscape evolution, and the role of high latitudes in the global climate system. 
    more » « less