skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2052817

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Positron Annihilation Lifetime Spectroscopy (PALS) has been employed to investigate the catalysts HZSM‐5 and MESO−Y, which play a pivotal role in catalyzing and upgrading plastics, with a primary focus on oxygenated polymers, thereby transforming existing plastic materials into simpler, higher‐quality value‐added products. In this study, PALS was systematically compared with other complementary analytical techniques. The research outcomes have successfully demonstrated the efficacy of PALS in elucidating the morphology and topology of zeolites at micro/meso‐meter scales. The first experiment focuses on H‐ZSM‐5 zeolite subjected to treatments involving polyurethane and polypropylene. The second experiment delves into H‐ZSM‐5 zeolites with varying Si/Al ratios, both before and after conversion. The third experiment investigates Y zeolites that are surfactant templated to induce meso‐porosity, examining their fresh state as well as their post‐conversion condition. The PALS analysis was supplemented by BET (Brunauer‐Emmett‐Teller) analysis and NMR (Nuclear Magnetic Resonance) spectroscopies. Notably, PALS exhibits superior sensitivity, at the sub‐nanometer scale, suggesting its potential as a preferred complementary method for catalysis studies. In conclusion, the integration of PALS into the repertoire of analytical tools enhances our understanding of catalyst behavior and catalytic processes, offering valuable insights for the advancement of plastic recycling and catalysis research. 
    more » « less
  2. Free, publicly-accessible full text available December 24, 2025
  3. A proficient site for humid CO2adsorption in zeolites: K+-D8R structures can selectively adsorb CO2over H2O. 
    more » « less
  4. This perspective summarizes the role of binders in zeolitic catalytic systems and provides insights into how binders affect acid density, porosity, and the control of the proximity between metal and acid sites within shaped zeolite catalysts. 
    more » « less
  5. Multi-scale upcycling of PPG polymer synthesizes propionaldehyde in 95% selectivity & 86% yield. 
    more » « less