skip to main content


Search for: All records

Award ID contains: 2053541

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Despite its electron deficiency, boron can form multiple bonds with a variety of elements. However, multiple bonds between boron and main-group metal elements are relatively rare. Here we report the observation of boron-lead multiple bonds in PbB2Oand PbB3O2, which are produced and characterized in a cluster beam. PbB2Ois found to have an open-shell linear structure, in which the bond order of B☱Pb is 2.5, while the closed-shell [Pb≡B–B≡O]2–contains a B≡Pb triple bond. PbB3O2is shown to have a Y-shaped structure with a terminal B = Pb double bond coordinated by two boronyl ligands. Comparison between [Pb≡B–B≡O]2–/[Pb=B(B≡O)2]and the isoelectronic [Pb≡B–C≡O]/[Pb=B(C≡O)2]+carbonyl counterparts further reveals transition-metal-like behaviors for the central B atoms. Additional theoretical studies show that Ge and Sn can form similar boron species as Pb, suggesting the possibilities to synthesize new compounds containing multiple boron bonds with heavy group-14 elements.

     
    more » « less
  2. Abstract

    Lanthanide (Ln) elements are generally found in the oxidation state +II or +III, and a few examples of +IV and +V compounds have also been reported. In contrast, monovalent Ln(+I) complexes remain scarce. Here we combine photoelectron spectroscopy and theoretical calculations to study Ln-doped octa-boron clusters (LnB8, Ln = La, Pr, Tb, Tm, Yb) with the rare +I oxidation state. The global minimum of the LnB8species changes fromCstoC7vsymmetry accompanied by an oxidation-state change from +III to +I from the early to late lanthanides. All theC7v-LnB8clusters can be viewed as a monovalent Ln(I) coordinated by a η8-B82−doubly aromatic ligand. The B73−, B82−, and B9series of aromatic boron clusters are analogous to the classical aromatic hydrocarbon molecules, C5H5, C6H6, and C7H7+, respectively, with similar trends of size and charge state and they are named collectively as “borozenes”. Lanthanides with variable oxidation states and magnetic properties may be formed with different borozenes.

     
    more » « less
  3. Free, publicly-accessible full text available March 1, 2025
  4. Joint photoelectron spectroscopy and first-principles theory investigations indicate that the Pb-doped PbB2(BO)nclusters (n= 0−2) undergo a transformation from σ + π doubly aromatic triangle PbB2to PbB4(BO)2−/0complexes with a B≡B triple bond.

     
    more » « less
    Free, publicly-accessible full text available February 7, 2025
  5. We report the experimental observation and spectroscopic characterization, and structure and bonding analyses of copper–borozene complexes.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  6. Metal-boron triple bonds are rare due to the electron deficiency of boron.

     
    more » « less
    Free, publicly-accessible full text available October 17, 2024
  7. We present an investigation on the structures and chemical bonding of two Bi-doped boron clusters BiBn− (n = 4, 5) using photoelectron spectroscopy and theoretical calculations. The electron affinities of BiB4 and BiB5 are measured to be 2.22(2) eV and 2.61(2) eV, respectively. Well-resolved photoelectron spectra are obtained and used to compare with theoretical calculations to verify the structures of BiB4− and BiB5−. Both clusters adopt planar structures with the Bi atom bonded to the periphery of the planar Bn moiety. Chemical bonding analyses reveal that the Bn moiety maintains σ and π double-aromaticity. The Bi atom is found to induce relatively small structural changes to the Bn moiety, very different from transition metal-doped boron clusters.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  8. We report a study on the electronic structure and chemical bonding of the BiB molecule using high-resolution photoelectron imaging of cryogenically cooled BiB− anion. By eliminating all the vibrational hot bands, we can resolve the complicated detachment transitions due to the open-shell nature of BiB and the strong spin–orbit coupling. The electron affinity of BiB is measured to be 2.010(1) eV. The ground state of BiB− is determined to be 2Π(3/2) with a σ2π3 valence electron configuration, while the ground state of BiB is found to be 3Σ−(0+) with a σ2π2 electron configuration. Eight low-lying spin–orbit excited states [3Σ−(1), 1Δ(2), 1Σ+(0+), 3Π(2), 3Π(1), 1Π(1)], including two forbidden transitions, [3Π(0−) and 3Π(0+)], are observed for BiB as a result of electron detachment from the σ and π orbitals of BiB−. The angular distribution information from the photoelectron imaging is found to be critical to distinguish detachment transitions from the σ or π orbital for the spectral assignment. This study provides a wealth of information about the low-lying electronic states and spin–orbit coupling of BiB, demonstrating the importance of cryogenic cooling for obtaining well-resolved photoelectron spectra for size-selected clusters produced from a laser vaporization cluster source.

     
    more » « less
    Free, publicly-accessible full text available September 21, 2024
  9. Free, publicly-accessible full text available August 1, 2024
  10. Free, publicly-accessible full text available June 21, 2024