Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Icy moons in the outer Solar System likely contain rocky, chondritic interiors, but this material is rarely studied under confining pressure. The contribution of rocky interiors to deformation and heat generation is therefore poorly constrained. We deformed LL6 chondrites at confining pressures ≤100 MPa and quasistatic strain rates. We defined a failure envelope, recorded acoustic emissions (AEs), measured ultrasonic velocities, and retrieved static and dynamic elastic moduli for the experimental conditions. The Young's modulus, which quantifies stiffness, of the chondritic material increased with increasing confining pressure. The material reached its peak strength, which is the maximum supported differential stress (σ1 − σ3), between 40 and 50 MPa confining pressure. Above this 40–50 MPa range of confining pressure, the stiffness increased significantly, while the peak strength dropped. Acoustic emission events associated with brittle deformation mechanisms occurred both during isotropic pressurization (σ1 = σ2 = σ3) as well as at low differential stresses during triaxial deformation (σ1 > σ2 = σ3), during nominally “elastic” deformation, indicating that dissipative processes are likely possible in the rocky interiors of icy moons. These events also occurred less frequently at higher confining pressures. We therefore suggest that the chondritic interiors of icy moons could become less compliant, and possibly less dissipative, as a function of the moons' pressure and size.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Abstract Before large volumes of crystal poor rhyolites are mobilized as melt, they are extracted through the reduction of pore space within their corresponding crystal matrix (compaction). Petrological and mechanical models suggest that a significant fraction of this process occurs at intermediate melt fractions (ca. 0.3–0.6). The timescales associated with such extraction processes have important ramifications for volcanic hazards. However, it remains unclear how melt is redistributed at the grain‐scale and whether using continuum scale models for compaction is suitable to estimate extraction timescales at these melt fractions. To explore these issues, we develop and apply a two‐phase continuum model of compaction to two suites of analog phase separation experiments—one conducted at low and the other at high temperatures, T, and pressures, P. We characterize the ability of the crystal matrix to resist porosity change using parameterizations of granular phenomena and find that repacking explains both data sets well. A transition between compaction by repacking to melt‐enhanced grain boundary diffusion‐controlled creep near the maximum packing fraction of the mush may explain the difference in compaction rates inferred from high T + P experiments and measured in previous deformation experiments. When upscaling results to magmatic systems at intermediate melt fractions, repacking may provide an efficient mechanism to redistribute melt. Finally, outside nearly instantaneous force chain disruption events occasionally recorded in the low T + P experiments, melt loss is continuous, and two‐phase dynamics can be solved at the continuum scale with an effective matrix viscosity.more » « less
-
Abstract The hydrous mineral talc is stable over a relatively large P‐T field and can form due to fluid migration and metamorphic reactions in mafic and ultramafic rocks and in faults along plate boundary interfaces. Talc is known to be one of the weakest minerals, making it potentially important for the deformation dynamics and seismic characteristics of faults. However, little is known about talc's mechanical properties at high temperatures under confining pressures greater than 0.5 GPa. We present results of deformation experiments on natural talc cylinders exploring talc rheology under 0.5–1.5 GPa and 400–700°C, P‐T conditions simulating conditions at deep faults and subducted slab interface. At these pressures, the strength of talc is highly temperature‐dependent where the thermal weakening is associated with an increased tendency for localization. The strength of talc and friction coefficient inferred from Mohr circle analysis is between 0.13 at 400°C to ∼0.01 at 700°C. Strength comparison with other phyllosilicates highlights talc as the weakest mineral, a factor of ∼3–4 weaker than antigorite and a factor of ∼2 weaker than chlorite. The observed friction coefficients for talc are consistent with those inferred for subducted slabs and the San Andreas fault. We conclude that the presence of talc may explain the low strength of faults and of subducted slab interface at depths where transient slow slip events occur.more » « less
-
Abstract The rheology of crustal mushes is a crucial parameter controlling melt segregation and magma flow. However, the relations between mush dynamics and crystal size and shape distribution remain poorly understood because of the complexity of melt‐crystal and crystal‐crystal interactions. We performed analog experiments to characterize the mechanisms that control pore space reduction associated with repacking. Three suspensions of monodisperse particles with different geometries and aspect ratios (1:1, 2:1, 4:1) in a viscous fluid were tested. Our results show that particle aspect ratios strongly control the melt extraction processes. We identify two competing mechanisms that enable melt extraction at grain scale. The first mechanism leads to continuous deformation and melt extraction and is associated with “diffuse” frictional dissipation between neighboring particles. The second is stochastic, localized, and nearly instantaneous and is associated with the development and destruction of force chains percolating through the granular assembly.more » « less
-
Abstract Fault zones accommodate relative motion between tectonic blocks and control earthquake nucleation. Nanocrystalline fault rocks are ubiquitous in “principal slip zones” indicating that these materials are determining fault stability. However, the rheology of nanocrystalline fault rocks remains poorly constrained. Here, we show that such fault rocks are an order of magnitude weaker than their microcrystalline counterparts when deformed at identical experimental conditions. Weakening of the fault rocks is hence intrinsic, it occurs once nanocrystalline layers form. However, it is difficult to produce “rate weakening” behavior due to the low measured stress exponent,n, of 1.3 ± 0.4 and the low activation energy,Q, of 16,000 ± 14,000 J/mol implying that the material will be strongly “rate strengthening” with a weak temperature sensitivity. Failure of the fault zone nevertheless occurs once these weak layers coalesce in a kinematically favored network. This type of instability is distinct from the frictional instability used to describe crustal earthquakes.more » « less
-
Deformation of all materials necessitates the collective propagation of various microscopic defects. On Earth, fracturing gives way to crystal-plastic deformation with increasing depth resulting in a “brittle-to-ductile” transition (BDT) region that is key for estimating the integrated strength of tectonic plates, constraining the earthquake cycle, and utilizing deep geothermal resources. Here, we show that the crossing of a BDT in marble during deformation experiments in the laboratory is accompanied by systematic increase in the frequency of acoustic emissions suggesting a profound change in the mean size and propagation velocity of the active defects. We further identify dominant classes of emitted waveforms using unsupervised learning methods and show that their relative activity systematically changes as the rocks cross the brittle–ductile transition. As pressure increases, long-period signals are suppressed and short-period signals become dominant. At higher pressures, signals frequently come in avalanche-like patterns. We propose that these classes of waveforms correlate with individual dominant defect types. Complex mixed-mode events indicate that interactions between the defects are common over the whole pressure range, in agreement with postmortem microstructural observations. Our measurements provide unique, real-time data of microscale dynamics over a broad range of pressures (10 to 200 MPa) and can inform micromechanical models for semi-brittle deformation.more » « less
-
Abstract. Geological carbon sequestration provides permanentCO2 storage to mitigate the current high concentration of CO2 inthe atmosphere. CO2 mineralization in basalts has been proven to be oneof the most secure storage options. For successful implementation and futureimprovements of this technology, the time-dependent deformation behavior ofreservoir rocks in the presence of reactive fluids needs to be studied indetail. We conducted load-stepping creep experiments on basalts from theCarbFix site (Iceland) under several pore fluid conditions (dry,H2O saturated and H2O + CO2 saturated) at temperature,T≈80 ∘C and effective pressure, Peff=50 MPa,during which we collected mechanical, acoustic and pore fluid chemistrydata. We observed transient creep at stresses as low as 11 % of thefailure strength. Acoustic emissions (AEs) correlated strongly with strainaccumulation, indicating that the creep deformation was a brittle process inagreement with microstructural observations. The rate and magnitude of AEswere higher in fluid-saturated experiments than in dry conditions. We inferthat the predominant mechanism governing creep deformation is time- andstress-dependent subcritical dilatant cracking. Our results suggest thatthe presence of aqueous fluids exerts first-order control on creepdeformation of basaltic rocks, while the composition of the fluids playsonly a secondary role under the studied conditions.more » « less