Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this article, we continue the study of a certain family of 2-Calabi–Yau tilted algebras, called dimer tree algebras. The terminology comes from the fact that these algebras can also be realized as quotients of dimer algebras on a disk. They are defined by a quiver with potential whose dual graph is a tree, and they are generally of wild representation type. Given such an algebra $$B$$, we construct a polygon $$\mathcal {S}$$ with a checkerboard pattern in its interior, which defines a category $$\text {Diag}(\mathcal {S})$$. The indecomposable objects of $$\text {Diag}(\mathcal {S})$$ are the 2-diagonals in $$\mathcal {S}$$, and its morphisms are certain pivoting moves between the 2-diagonals. We prove that the category $$\text {Diag}(\mathcal {S})$$ is equivalent to the stable syzygy category of the algebra $$B$$. This result was conjectured by the authors in an earlier paper, where it was proved in the special case where every chordless cycle is of length three. As a consequence, we conclude that the number of indecomposable syzygies is finite, and moreover the syzygy category is equivalent to the 2-cluster category of type $$\mathbb {A}$$. In addition, we obtain an explicit description of the projective resolutions, which are periodic. Finally, the number of vertices of the polygon $$\mathcal {S}$$ is a derived invariant and a singular invariant for dimer tree algebras, which can be easily computed form the quiver.more » « less
-
Free, publicly-accessible full text available December 1, 2025
An official website of the United States government
