Abstract Using the invariant theory of arc spaces, we find minimal strong generating sets for certain cosets of affine vertex algebras inside free field algebras that are related to classical Howe duality. These results have several applications. First, for any vertex algebra $${{\mathcal {V}}}$$, we have a surjective homomorphism of differential algebras $$\mathbb {C}[J_{\infty }(X_{{{\mathcal {V}}}})] \rightarrow \text {gr}^{F}({{\mathcal {V}}})$$; equivalently, the singular support of $${{\mathcal {V}}}$$ is a closed subscheme of the arc space of the associated scheme $$X_{{{\mathcal {V}}}}$$. We give many new examples of classically free vertex algebras (i.e., this map is an isomorphism), including $$L_{k}({{\mathfrak {s}}}{{\mathfrak {p}}}_{2n})$$ for all positive integers $$n$$ and $$k$$. We also give new examples where the kernel of this map is nontrivial but is finitely generated as a differential ideal. Next, we prove a coset realization of the subregular $${{\mathcal {W}}}$$-algebra of $${{\mathfrak {s}}}{{\mathfrak {l}}}_{n}$$ at a critical level that was previously conjectured by Creutzig, Gao, and the 1st author. Finally, we give some new level-rank dualities involving affine vertex superalgebras.
more »
« less
A Geometric Model for Syzygies Over 2-Calabi–Yau Tilted Algebras II
Abstract In this article, we continue the study of a certain family of 2-Calabi–Yau tilted algebras, called dimer tree algebras. The terminology comes from the fact that these algebras can also be realized as quotients of dimer algebras on a disk. They are defined by a quiver with potential whose dual graph is a tree, and they are generally of wild representation type. Given such an algebra $$B$$, we construct a polygon $$\mathcal {S}$$ with a checkerboard pattern in its interior, which defines a category $$\text {Diag}(\mathcal {S})$$. The indecomposable objects of $$\text {Diag}(\mathcal {S})$$ are the 2-diagonals in $$\mathcal {S}$$, and its morphisms are certain pivoting moves between the 2-diagonals. We prove that the category $$\text {Diag}(\mathcal {S})$$ is equivalent to the stable syzygy category of the algebra $$B$$. This result was conjectured by the authors in an earlier paper, where it was proved in the special case where every chordless cycle is of length three. As a consequence, we conclude that the number of indecomposable syzygies is finite, and moreover the syzygy category is equivalent to the 2-cluster category of type $$\mathbb {A}$$. In addition, we obtain an explicit description of the projective resolutions, which are periodic. Finally, the number of vertices of the polygon $$\mathcal {S}$$ is a derived invariant and a singular invariant for dimer tree algebras, which can be easily computed form the quiver.
more »
« less
- PAR ID:
- 10509953
- Publisher / Repository:
- IMRN
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Let X be a simply connected closed oriented manifold of rationally elliptic homotopy type. We prove that the string topology bracket on the $S^1$ -equivariant homology $$ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $$ of the free loop space of X preserves the Hodge decomposition of $$ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $$ , making it a bigraded Lie algebra. We deduce this result from a general theorem on derived Poisson structures on the universal enveloping algebras of homologically nilpotent finite-dimensional DG Lie algebras. Our theorem settles a conjecture of [7].more » « less
-
The ı \imath Hall algebra of the projective line is by definition the twisted semi-derived Ringel-Hall algebra of the category of 1 1 -periodic complexes of coherent sheaves on the projective line. This ı \imath Hall algebra is shown to realize the universal q q -Onsager algebra (i.e., ı \imath quantum group of split affine A 1 A_1 type) in its Drinfeld type presentation. The ı \imath Hall algebra of the Kronecker quiver was known earlier to realize the same algebra in its Serre type presentation. We then establish a derived equivalence which induces an isomorphism of these two ı \imath Hall algebras, explaining the isomorphism of the q q -Onsager algebra under the two presentations.more » « less
-
We generalize Jones’ planar algebras by internalising the notion to a pivotal braided tensor category . To formulate the notion, the planar tangles are now equipped with additional ‘anchor lines’ which connect the inner circles to the outer circle. We call the resulting notion ananchored planar algebra. If we restrict to the case when is the category of vector spaces, then we recover the usual notion of a planar algebra. Building on our previous work on categorified traces, we prove that there is an equivalence of categories between anchored planar algebras in and pivotal module tensor categories over equipped with a chosen self-dual generator. Even in the case of usual planar algebras, the precise formulation of this theorem, as an equivalence of categories, has not appeared in the literature. Using our theorem, we describe many examples of anchored planar algebras.more » « less
-
null (Ed.)The class of simple separable KK-contractible (KK-equivalent to \{0\} ) C*-algebra s which have finite nuclear dimension is shown to be classified by the Elliott invariant. In particular, the class of C*-algebras A\otimes K is classifiable, where A is a simple separable C*-algebra with finite nuclear dimension and is the simple inductive limit of Razak algebras with unique trace, which is boundedmore » « less