skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2054602

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this work we study d-dimensional majorant properties. We prove that a set of frequencies in $$\mathbb{Z}^d$$ satisfies the strict majorant property on $L^p([0,1]^d)$ for all p > 0 if and only if the set is affinely independent. We further construct three types of violations of the strict majorant property. Any set of at least d + 2 frequencies in $$\mathbb{Z}^d$$ violates the strict majorant property on $L^p([0,1]^d)$ for an open interval of $$p \not\in 2\mathbb{N}$$ of length 2. Any infinite set of frequencies in $$\mathbb{Z}^d$$ violates the strict majorant property on $L^p([0,1]^d)$ for an infinite sequence of open intervals of $$p \not\in 2\mathbb{N}$$ of length 2. Finally, given any p > 0 with $$p \not\in 2\mathbb{N}$$, we exhibit a set of d + 2 frequencies on the moment curve in $$\mathbb{R}^d$$ that violate the strict majorant property on $L^p([0,1]^d).$ 
    more » « less
  2. This paper establishes a necessary and sufficient condition for L p L^p -boundedness of a class of multilinear functionals which includes both the Brascamp-Lieb inequalities and generalized Radon transforms associated to algebraic incidence relations. The testing condition involves bounding the average of an inverse power of certain Jacobian-type quantities along fibers of associated projections and covers many widely-studied special cases, including convolution with measures on nondegenerate hypersurfaces or on nondegenerate curves. The heart of the proof is based on Guth’s visibility lemma [Acta Math. 205 (2010), pp. 263–286] in one direction and on a careful analysis of Knapp-type examples in the other. Various applications are discussed which demonstrate new and subtle interplay between curvature and transversality and establish nontrivial mixed-norm L p L^p -improving inequalities in the model case of convolution with affine hypersurface measure on the paraboloid. 
    more » « less
    Free, publicly-accessible full text available December 30, 2025
  3. We provide a simple criterion on a family of functions that implies a square function estimate on L p L^p for every even integer p ≥<#comment/> 2 p \geq 2 . This defines a new type of superorthogonality that is verified by checking a less restrictive criterion than any other type of superorthogonality that is currently known. 
    more » « less