skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 30, 2025

Title: Testing conditions for multilinear Radon-Brascamp-Lieb inequalities
This paper establishes a necessary and sufficient condition for L p L^p -boundedness of a class of multilinear functionals which includes both the Brascamp-Lieb inequalities and generalized Radon transforms associated to algebraic incidence relations. The testing condition involves bounding the average of an inverse power of certain Jacobian-type quantities along fibers of associated projections and covers many widely-studied special cases, including convolution with measures on nondegenerate hypersurfaces or on nondegenerate curves. The heart of the proof is based on Guth’s visibility lemma [Acta Math. 205 (2010), pp. 263–286] in one direction and on a careful analysis of Knapp-type examples in the other. Various applications are discussed which demonstrate new and subtle interplay between curvature and transversality and establish nontrivial mixed-norm L p L^p -improving inequalities in the model case of convolution with affine hypersurface measure on the paraboloid.  more » « less
Award ID(s):
2054602
PAR ID:
10590977
Author(s) / Creator(s):
Publisher / Repository:
Transactions of the American Mathematical Society
Date Published:
Journal Name:
Transactions of the American Mathematical Society
ISSN:
0002-9947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove that for any countable directed graph E E with Condition (K), the associated graph C ∗<#comment/> C^* -algebra C ∗<#comment/> ( E ) C^*(E) has nuclear dimension at most 2 2 . Furthermore, we provide a sufficient condition producing an upper bound of 1 1
    more » « less
  2. We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable ∞<#comment/> \infty -category of non- A 1 \mathbb {A}^1 -invariant motivic spectra, which turns out to be equivalent to the ∞<#comment/> \infty -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this ∞<#comment/> \infty -category satisfies P 1 \mathbb {P}^1 -homotopy invariance and weighted A 1 \mathbb {A}^1 -homotopy invariance, which we use in place of A 1 \mathbb {A}^1 -homotopy invariance to obtain analogues of several key results from A 1 \mathbb {A}^1 -homotopy theory. These allow us in particular to define a universal oriented motivic E ∞<#comment/> \mathbb {E}_\infty -ring spectrum M G L \mathrm {MGL} . We then prove that the algebraic K-theory of a qcqs derived scheme X X can be recovered from its M G L \mathrm {MGL} -cohomology via a Conner–Floyd isomorphism\[ M G L ∗<#comment/> ∗<#comment/> ( X ) ⊗<#comment/> L Z [ β<#comment/> ±<#comment/> 1 ] ≃<#comment/> K ∗<#comment/> ∗<#comment/> ( X ) , \mathrm {MGL}^{**}(X)\otimes _{\mathrm {L}{}}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X), \]where L \mathrm {L}{} is the Lazard ring and K p , q ( X ) = K 2 q −<#comment/> p ( X ) \mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X) . Finally, we prove a Snaith theorem for the periodized version of M G L \mathrm {MGL}
    more » « less
  3. Let Ω<#comment/> + ⊂<#comment/> R n + 1 \Omega ^+\subset \mathbb {R}^{n+1} be a bounded δ<#comment/> \delta -Reifenberg flat domain, with δ<#comment/> > 0 \delta >0 small enough, possibly with locally infinite surface measure. Assume also that Ω<#comment/> −<#comment/> = R n + 1 ∖<#comment/> Ω<#comment/> + ¯<#comment/> \Omega ^-= \mathbb {R}^{n+1}\setminus \overline {\Omega ^+} is an NTA (non-tangentially accessible) domain as well and denote by ω<#comment/> + \omega ^+ and ω<#comment/> −<#comment/> \omega ^- the respective harmonic measures of Ω<#comment/> + \Omega ^+ and Ω<#comment/> −<#comment/> \Omega ^- with poles p ±<#comment/> ∈<#comment/> Ω<#comment/> ±<#comment/> p^\pm \in \Omega ^\pm . In this paper we show that the condition that log ⁡<#comment/> d ω<#comment/> −<#comment/> d ω<#comment/> + ∈<#comment/> VMO ⁡<#comment/> ( ω<#comment/> + ) \log \dfrac {d\omega ^-}{d\omega ^+} \in \operatorname {VMO}(\omega ^+) is equivalent to Ω<#comment/> + \Omega ^+ being a chord-arc domain with inner unit normal belonging to VMO ⁡<#comment/> ( H n | ∂<#comment/> Ω<#comment/> + ) \operatorname {VMO}(\mathcal {H}^n|_{\partial \Omega ^+})
    more » « less
  4. We show that for primes N , p ≥<#comment/> 5 N, p \geq 5 with N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , the class number of Q ( N 1 / p ) \mathbb {Q}(N^{1/p}) is divisible by p p . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , there is always a cusp form of weight 2 2 and level Γ<#comment/> 0 ( N 2 ) \Gamma _0(N^2) whose ℓ<#comment/> \ell th Fourier coefficient is congruent to ℓ<#comment/> + 1 \ell + 1 modulo a prime above p p , for all primes ℓ<#comment/> \ell . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- p p extension of Q ( N 1 / p ) \mathbb {Q}(N^{1/p})
    more » « less
  5. We prove that the weak- L p L^{p} norms, and in fact the sparse ( p , 1 ) (p,1) -norms, of the Carleson maximal partial Fourier sum operator are ≲<#comment/> ( p −<#comment/> 1 ) −<#comment/> 1 \lesssim (p-1)^{-1} as p →<#comment/> 1 + p\to 1^+ . This is an improvement on the Carleson-Hunt theorem, where the same upper bound on the growth order is obtained for the restricted weak- L p L^p type norm, and which was the strongest quantitative bound prior to our result. Furthermore, our sparse ( p , 1 ) (p,1) -norms bound imply new and stronger results at the endpoint p = 1 p=1 . In particular, we obtain that the Fourier series of functions from the weighted Arias de Reyna space Q A ∞<#comment/> ( w ) \mathrm {QA}_{\infty }(w) , which contains the weighted Antonov space L log ⁡<#comment/> L log ⁡<#comment/> log ⁡<#comment/> log ⁡<#comment/> L ( T ; w ) L\log L\log \log \log L(\mathbb T; w) , converge almost everywhere whenever w ∈<#comment/> A 1 w\in A_1 . This is an extension of the results of Antonov [Proceedings of the XXWorkshop on Function Theory (Moscow, 1995), 1996, pp. 187–196] and Arias De Reyna, where w w must be Lebesgue measure. The backbone of our treatment is a new, sharply quantified near- L 1 L^1 Carleson embedding theorem for the modulation-invariant wave packet transform. The proof of the Carleson embedding relies on a newly developed smooth multi-frequency decomposition which, near the endpoint p = 1 p=1 , outperforms the abstract Hilbert space approach of past works, including the seminal one by Nazarov, Oberlin and Thiele [Math. Res. Lett. 17 (2010), pp. 529–545]. As a further example of application, we obtain a quantified version of the family of sparse bounds for the bilinear Hilbert transforms due to Culiuc, Ou and the first author. 
    more » « less