skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2054604

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a methodology that, for the first time, allows rigorous quantum calculation of the inelastic neutron scattering (INS) spectra of a triatomic molecule in a nanoscale cavity, in this case, H2O inside the fullerene C60. Both moieties are taken to be rigid. Our treatment incorporates the quantum six-dimensional translation–rotation (TR) wave functions of the encapsulated H2O, which serve as the spatial parts of the initial and final states of the INS transitions. As a result, the simulated INS spectra reflect the coupled TR dynamics of the nanoconfined guest molecule. They also exhibit the features arising from symmetry breaking observed for solid H2O@C60at low temperatures. Utilizing this methodology, we compute the INS spectra of H2O@C60for two incident neutron wavelengths and compare them with the corresponding experimental spectra. Good overall agreement is found, and the calculated spectra provide valuable additional insights.

     
    more » « less