Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We consider local escape rates and hitting time statistics for unimodal interval maps of Misiurewicz–Thurston type. We prove that for any pointzin the interval, there is a local escape rate and hitting time statistics that is one of three types. While it is key that we cover all pointsz, the particular interest here is whenzis periodic and in the postcritical orbit that yields the third part of the trichotomy. We also prove generalized asymptotic escape rates of the form first shown by Bruin, Demers and Todd.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract In a recent work, Baladi and Demers constructed a measure of maximal entropy for finite horizon dispersing billiard maps and proved that it is unique, mixing and moreover Bernoulli. We show that this measure enjoys natural probabilistic properties for Hölder continuous observables, such as at least polynomial decay of correlations and the Central Limit Theorem. The results of Baladi and Demers are subject to a condition of sparse recurrence to singularities. We use a similar and slightly stronger condition, and it has a direct effect on our rate of decay of correlations. For billiard tables with bounded complexity (a property conjectured to be generic), we show that the sparse recurrence condition is always satisfied and the correlations decay at a super‐polynomial rate.more » « less
-
Using recent work of Carrand on equilibrium states for the billiard map, and adapting techniques from Baladi and Demers, we construct the unique measure of maximal entropy (MME) for two-dimensional finite horizon Sinai (dispersive) billiard flows $$\Phi^1$$ (and show it is Bernoulli), assuming the bound $$\htop(\Phi^1) \tau_{\min} > s_0 \log 2$$, where $$s_0\in (0,1)$$ quantifies the recurrence to singularities. This bound holds in many examples (it is expected to hold generically).more » « less
-
For any finite horizon Sinai billiard map \begin{document}$ T $$\end{document} on the two-torus, we find \begin{document}$$ t_*>1 $$\end{document} such that for each \begin{document}$$ t\in (0,t_*) $$\end{document} there exists a unique equilibrium state \begin{document}$$ \mu_t $$\end{document} for \begin{document}$$ - t\log J^uT $$\end{document}, and \begin{document}$$ \mu_t $$\end{document} is \begin{document}$$ T $$\end{document}-adapted. (In particular, the SRB measure is the unique equilibrium state for \begin{document}$$ - \log J^uT $$\end{document}.) We show that \begin{document}$$ \mu_t $$\end{document} is exponentially mixing for Hölder observables, and the pressure function \begin{document}$$ P(t) = \sup_\mu \{h_\mu -\int t\log J^uT d \mu\} $$\end{document} is analytic on \begin{document}$$ (0,t_*) $$\end{document}. In addition, \begin{document}$$ P(t) $$\end{document} is strictly convex if and only if \begin{document}$$ \log J^uT $$\end{document} is not \begin{document}$$ \mu_t $$\end{document}-a.e. cohomologous to a constant, while, if there exist \begin{document}$$ t_a\ne t_b $$\end{document} with \begin{document}$$ \mu_{t_a} = \mu_{t_b} $$\end{document}, then \begin{document}$$ P(t) $$\end{document} is affine on \begin{document}$$ (0,t_*) $$\end{document}. An additional sparse recurrence condition gives \begin{document}$$ \lim_{t\downarrow 0} P(t) = P(0) $$\end{document}$.more » « less
An official website of the United States government

Full Text Available