For any finite horizon Sinai billiard map
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
10
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Baladi, Viviane (1)
-
Demers, Mark F. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
& Baek, Y. (0)
-
& Bahabry, Ahmed. (0)
-
& Bai, F. (0)
-
& Balasubramanian, R. (0)
-
& Barth-Cohen, L. (0)
-
& Bassett, L. (0)
-
& Beaulieu, C (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Agarwal (0)
-
A. Beygelzimer (0)
-
A. E. Lischka (0)
-
A. E. Lischka, E. B. (0)
-
A. E. Lischka, E.B. Dyer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
on the two-torus, we find\begin{document}$ T $\end{document} such that for each\begin{document}$ t_*>1 $\end{document} there exists a unique equilibrium state\begin{document}$ t\in (0,t_*) $\end{document} for\begin{document}$ \mu_t $\end{document} , and\begin{document}$ - t\log J^uT $\end{document} is\begin{document}$ \mu_t $\end{document} -adapted. (In particular, the SRB measure is the unique equilibrium state for\begin{document}$ T $\end{document} .) We show that\begin{document}$ - \log J^uT $\end{document} is exponentially mixing for Hölder observables, and the pressure function\begin{document}$ \mu_t $\end{document} is analytic on\begin{document}$ P(t) = \sup_\mu \{h_\mu -\int t\log J^uT d \mu\} $\end{document} . In addition,\begin{document}$ (0,t_*) $\end{document} is strictly convex if and only if\begin{document}$ P(t) $\end{document} is not\begin{document}$ \log J^uT $\end{document} -a.e. cohomologous to a constant, while, if there exist\begin{document}$ \mu_t $\end{document} with\begin{document}$ t_a\ne t_b $\end{document} , then\begin{document}$ \mu_{t_a} = \mu_{t_b} $\end{document} is affine on\begin{document}$ P(t) $\end{document} . An additional sparse recurrence condition gives\begin{document}$ (0,t_*) $\end{document} .\begin{document}$ \lim_{t\downarrow 0} P(t) = P(0) $\end{document}