skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2055604

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The first named author introduced the notion of upper stability for metric spaces in F. Baudier, Barycentric gluing and geometry of stable metrics, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM  116 no. 1, (2022), 48 as a relaxation of stability. The motivation was a search for a new invariant to distinguish the class of reflexive Banach spaces from stable metric spaces in the coarse and uniform category. In this paper we show that property Q does in fact imply upper stability. We also provide a direct proof of the fact that reflexive spaces are upper stable by relating the latter notion to the asymptotic structure of Banach spaces. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. In this paper we present new proofs of the non-embeddability of countably branching trees into Banach spaces satisfying property beta_p and of countably branching diamonds into Banach spaces which are l_p-asymptotic midpoint uniformly convex (p-AMUC) for p>1. These proofs are entirely metric in nature and are inspired by previous work of Jiří Matoušek. In addition, using this metric method, we succeed in extending these results to metric spaces satisfying certain embedding obstruction inequalities. Finally, we give Tessera-type lower bounds on the compression for a class of Lipschitz embeddings of the countably branching trees into Banach spaces containing l_p-asymptotic models for p>=1. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. We provide a characterization of when a coarse equivalence between coarse disjoint unions of expander graphs is close to a bijective coarse equivalence. We use this to show that if the uniform Roe algebras over metric spaces that are coarse unions of expanders graphs are isomorphic, then the metric spaces must be bijectively coarsely equivalent. 
    more » « less
  4. We study which von Neumann algebras can be embedded into uniform Roe algebras and quasi-local algebras associated with a uniformly locally finite metric space X. Under weak assumptions, these C*-algebras contain embedded copies of certain matrix algebras. We aim to show they cannot contain any other von Neumann algebras. One of our main results shows that the only embedded von Neumann algebras are the “obvious” ones. 
    more » « less
  5. By discretizing an argument of Kislyakov, Naor and Schechtman proved that the 1-Wasserstein metric over the planar grid { 0 , 1 , …<#comment/> , n } 2 \{0,1,\dots , n\}^2 has L 1 L_1 -distortion bounded below by a constant multiple of log ⁡<#comment/> n \sqrt {\log n} . We provide a new “dimensionality” interpretation of Kislyakov’s argument, showing that if { G n } n = 1 ∞<#comment/> \{G_n\}_{n=1}^\infty is a sequence of graphs whose isoperimetric dimension and Lipschitz-spectral dimension equal a common number δ<#comment/> ∈<#comment/> [ 2 , ∞<#comment/> ) \delta \in [2,\infty ) , then the 1-Wasserstein metric over G n G_n has L 1 L_1 -distortion bounded below by a constant multiple of ( log ⁡<#comment/> | G n | ) 1 δ<#comment/> (\log |G_n|)^{\frac {1}{\delta }} . We proceed to compute these dimensions for ⊘<#comment/> \oslash -powers of certain graphs. In particular, we get that the sequence of diamond graphs { D n } n = 1 ∞<#comment/> \{\mathsf {D}_n\}_{n=1}^\infty has isoperimetric dimension and Lipschitz-spectral dimension equal to 2, obtaining as a corollary that the 1-Wasserstein metric over D n \mathsf {D}_n has L 1 L_1 -distortion bounded below by a constant multiple of log ⁡<#comment/> | D n | \sqrt {\log | \mathsf {D}_n|} . This answers a question of Dilworth, Kutzarova, and Ostrovskii and exhibits only the third sequence of L 1 L_1 -embeddable graphs whose sequence of 1-Wasserstein metrics is not L 1 L_1 -embeddable. 
    more » « less