In this paper we derive the best constant for the following -type Gagliardo-Nirenberg interpolation inequality where parameters and satisfy the conditions , . The best constant is given by where is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds when for any real numbers , and . In fact, the generalized Lane-Emden equation in contains a delta function as a source and it is a Thomas-Fermi type equation. For or , have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show that and as for , where and are the function achieving equality and the best constant of -type Gagliardo-Nirenberg interpolation inequality, respectively. 
                        more » 
                        « less   
                    
                            
                            𝐿₁-distortion of Wasserstein metrics: A tale of two dimensions
                        
                    
    
            By discretizing an argument of Kislyakov, Naor and Schechtman proved that the 1-Wasserstein metric over the planar grid has -distortion bounded below by a constant multiple of . We provide a new “dimensionality” interpretation of Kislyakov’s argument, showing that if is a sequence of graphs whose isoperimetric dimension and Lipschitz-spectral dimension equal a common number , then the 1-Wasserstein metric over has -distortion bounded below by a constant multiple of . We proceed to compute these dimensions for -powers of certain graphs. In particular, we get that the sequence of diamond graphs has isoperimetric dimension and Lipschitz-spectral dimension equal to 2, obtaining as a corollary that the 1-Wasserstein metric over has -distortion bounded below by a constant multiple of . This answers a question of Dilworth, Kutzarova, and Ostrovskii and exhibits only the third sequence of -embeddable graphs whose sequence of 1-Wasserstein metrics is not -embeddable. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10445185
- Publisher / Repository:
- American Mathematical Society (AMS)
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society, Series B
- Volume:
- 10
- Issue:
- 30
- ISSN:
- 2330-0000
- Page Range / eLocation ID:
- p. 1077-1118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Let be a finite unramified extension, a continuous representation, and a tame inertial type of dimension . We explicitly determine, under mild regularity conditions on , the potentially crystalline deformation ring in parallel Hodge–Tate weights and inertial type when theshapeof with respect to has colength at most one. This has application to the modularity of a class of shadow weights in the weight part of Serre’s conjecture. Along the way we make unconditional the local-global compatibility results of Park and Qian [Mém. Soc. Math. Fr. (N.S.) 173 (2022), pp. vi+150].more » « less
- 
            The hypersimplex is the image of the positive Grassmannian under the moment map. It is a polytope of dimension in . Meanwhile, the amplituhedron is the projection of the positive Grassmannian into the Grassmannian under a map induced by a positive matrix . Introduced in the context ofscattering amplitudes, it is not a polytope, and has full dimension inside . Nevertheless, there seem to be remarkable connections between these two objects viaT-duality, as conjectured by Łukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]. In this paper we use ideas from oriented matroid theory, total positivity, and the geometry of the hypersimplex and positroid polytopes to obtain a deeper understanding of the amplituhedron. We show that the inequalities cutting outpositroid polytopes—images of positroid cells of under the moment map—translate into sign conditions characterizing the T-dualGrasstopes—images of positroid cells of under . Moreover, we subdivide the amplituhedron intochambers, just as the hypersimplex can be subdivided into simplices, with both chambers and simplices enumerated by the Eulerian numbers. We use these properties to prove the main conjecture of Łukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]: a collection of positroid polytopes is a tiling of the hypersimplex if and only if the collection of T-dual Grasstopes is a tiling of the amplituhedron for all . Moreover, we prove Arkani-Hamed–Thomas–Trnka’s conjectural sign-flip characterization of , and Łukowski–Parisi–Spradlin–Volovich’s conjectures on cluster adjacencyand onpositroid tilesfor (images of -dimensional positroid cells which map injectively into ). Finally, we introduce new cluster structures in the amplituhedron.more » « less
- 
            In this paper we consider which families of finite simple groups have the property that for each there exists such that, if and are normal subsets of with at least elements each, then every non-trivial element of is the product of an element of and an element of . We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form where is fixed and . However, in the case and alternating this holds with an explicit bound on in terms of . Related problems and applications are also discussed. In particular we show that, if are non-trivial words, is a finite simple group of Lie type of bounded rank, and for , denotes the probability that where are chosen uniformly and independently, then, as , the distribution tends to the uniform distribution on with respect to the norm.more » « less
- 
            We develop a higher semiadditive version of Grothendieck-Witt theory. We then apply the theory in the case of a finite field to study the higher semiadditive structure of the -local sphere at the prime , in particular realizing the non- -adic rational element as a “semiadditive cardinality.” As a further application, we compute and clarify certain power operations in .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
