Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Disposable wearable electronics are valuable for diagnostic and healthcare purposes, reducing maintenance needs and enabling broad accessibility. However, integrating a reliable power supply is crucial for their advancement, but conventional power sources present significant challenges. To address that issue, a novel paper‐based moist–electric generator is developed that harnesses ambient moisture for power generation. The device features gradients for functional groups and moisture adsorption and architecture of nanostructures within a disposable paper substrate. The nanoporous, gradient‐formed spore‐based biofilm and asymmetric electrode deposition enable sustained high‐efficiency power output. A Janus hydrophobic–hydrophilic paper layer enhances moisture harvesting, ensuring effective operation even in low‐humidity environments. This research reveals that the water adsorption gradient is crucial for performance under high humidity, whereas the functional group gradient is dominant under low humidity. The device delivers consistent performance across diverse conditions and flexibly conforms to various surfaces, making it ideal for wearable applications. Its eco‐friendly, cost‐effective, and disposable nature makes it a viable solution for widespread use with minimal environmental effects. This innovative approach overcomes the limitations of traditional power sources for wearable electronics, offering a sustainable solution for future disposable wearables. It significantly enhances personalized medicine through improved health monitoring and diagnostics.more » « less
- 
            Abstract Functioning ingestible capsules offer tremendous promise for a plethora of diagnostic and therapeutic applications. However, the absence of realistic and practical power solutions has greatly hindered the development of ingestible electronics. Microbial fuel cells (MFCs) hold great potential as power sources for such devices as the small intestinal environment maintains a steady internal temperature and a neutral pH. Those conditions and the constant supply of nutrient‐rich organics are a perfect environment to generate long‐lasting power. Although previous small‐scale MFCs have demonstrated many promising applications, little is known about the potential for generating power in the human gut environment. Here, this work reports the design and operation of a microbial biobattery capsule for ingestible applications. DormantBacillus subtilisendospores are a storable anodic biocatalyst that will provide on‐demand power when revived by nutrient‐rich intestinal fluids. A conductive, porous, poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate hydrogel anode enables superior electrical performance in what is the world's smallest MFC. Moreover, an oxygen‐rich cathode maintains its effective cathodic capability even in the oxygen‐deficit intestinal environment. As a proof‐of‐concept demonstration in stimulated intestinal fluid, the biobattery capsule produces a current density of 470 µA cm−2and a power density of 98 µW cm−2, ensuring its practical efficacy as a novel and sole power source for ingestible applications in the small intestine.more » « less
- 
            Abstract Considerable research efforts into the promises of electrogenic bacteria and the commercial opportunities they present are attempting to identify potential feasible applications. Metabolic electrons from the bacteria enable electricity generation sufficient to power portable or small‐scale applications, while the quantifiable electric signal in a miniaturized device platform can be sensitive enough to monitor and respond to changes in environmental conditions. Nanomaterials produced by the electrogenic bacteria can offer an innovative bottom‐up biosynthetic approach to synergize bacterial electron transfer and create an effective coupling at the cell–electrode interface. Furthermore, electrogenic bacteria can revolutionize the field of bioelectronics by effectively interfacing electronics with microbes through extracellular electron transfer. Here, these new directions for the electrogenic bacteria and their recent integration with micro‐ and nanosystems are comprehensively discussed with specific attention toward distinct applications in the field of powering, sensing, and synthesizing. Furthermore, challenges of individual applications and strategies toward potential solutions are provided to offer valuable guidelines for practical implementation. Finally, the perspective and view on how the use of electrogenic bacteria can hold immeasurable promise for the development of future electronics and their applications are presented.more » « less
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            This study presents a pioneering self-sustaining mechanism that exploits metabolic electron production from pre-loaded probiotics to power a vibrating capsule at a specific location in the gut. It is the first research to demonstrate the electrogenic properties of commercially available probiotics in a standard bacterial culture medium, Luria Broth (LB), and its application in generating vibration in a human stomach. The capsule is engineered with a miniature microbial fuel cell containing probiotics, an energy storage component (capacitor), a diode, and a vibrating motor. This assembly is enveloped in a Genipin-crosslinked mucoadhesive polymer to enhance adherence to the stomach lining and is further encapsulated within an acid-sensitive enteric coating to ensure selective dissolution in the stomach. This innovative approach heralds new possibilities for advanced gastrointestinal treatments by merging bio-electricity and biomechanics in a distinctive, patient-centric delivery system.more » « less
- 
            This study introduces a groundbreaking point-of-care (POC) system designed for antibiotic susceptibility testing (AST). At the heart of this innovation is the organic electrochemical transistor, a device that significantly amplifies the electrical signals arising from the redox activities and extracellular electron transfers of pathogens when exposed to antibiotics. This process involves electroactive reactions that either dope or de-dope the transistor's channel, leading to substantial changes in the current flow between the source and drain terminals. Furthermore, our system features an innovative integration with a paper substrate. This design decision significantly simplifies the handling of liquid bacterial cultures, making the process more straightforward and efficient. We have rigorously tested our sensing system using three well-known pathogens: Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, exposing them to leading antibiotics to validate the system's effectiveness.more » « less
- 
            Traditional hydrophilic wound dressings, while common, fail to effectively drain wound exudate, creating conditions favorable for bacterial growth. Similarly, newer Janus‐type dressings with hydrophobic‐hydrophilic properties also fall short, as their hydrophobic side causes excessive dryness by pulling biofluids from the wound, disrupting moisture balance. Additionally, embedding antibiotics in dressings at fixed concentrations, regardless of the infection type, reduces effectiveness and contributes to the growing problem of antibiotic resistance. In response, a single‐layered Janus paper wound dressing, designed for efficient exudate absorption and precise antibiotic delivery, is developed. The approach differs from traditional Janus‐type dressings; a hydrophilic layer is placed directly against the wound for better moisture management, while antibiotics are applied through the hydrophobic layer. To further enhance exudate management, the hydrophilic section with four extra absorbent pads is extended. The dressing's antibiotic efficacy and dosage are tailored based on antibiotic susceptibility testing, ensuring targeted treatment. The selected antibiotic is manually added but automatically delivered directly to the wound bed. The in vitro and ex vivo evaluations, using bacterial cultures on agar and porcine skin assays, respectively, confirm the dressing's superior exudate drainage and its ability to inhibit pathogen growth and reproduction, marking a significant advancement in wound care.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available