Abstract Microbial fuel cells (MFCs) that generate electricity generation from a broad diversity of biomass and organic substrates through microbial metabolism have attracted considerable research interest as an alternative clean energy technology and energy‐efficient wastewater treatment method. Despite encouraging successes and auspicious pilot‐scale experiments of the MFCs, increasing doubts about their viability for practical large‐scale applications are being raised. Low performance, expensive core parts and materials, energy‐intensive operation, and scaling bottlenecks question a sustainable development. Instead, special MFCs for low‐power battery‐reliant devices might be more applicable and potentially realizable. Such bacteria‐powered biobatteries would enable i) a truly stand‐alone device platform suitable for use in resource‐limited and remote regions, ii) simple, on‐demand power generation within a programmed period of time, and iii) a tracelessly biodegradable battery due to the use of the bacteria used for power generation. The biobattery would be an excellent power solution for small‐scale, on‐demand, single‐use, and disposable electronics. Recent progress of small‐scale MFC‐based biobatteries is critically reviewed with specific attention toward various device platforms. Furthermore, comments and outlook related to the potential directions and challenges of the biobatteries are discussed to offer inspiration to the community and induce fruitful future research. 
                        more » 
                        « less   
                    
                            
                            Electrogenic Bacteria Promise New Opportunities for Powering, Sensing, and Synthesizing
                        
                    
    
            Abstract Considerable research efforts into the promises of electrogenic bacteria and the commercial opportunities they present are attempting to identify potential feasible applications. Metabolic electrons from the bacteria enable electricity generation sufficient to power portable or small‐scale applications, while the quantifiable electric signal in a miniaturized device platform can be sensitive enough to monitor and respond to changes in environmental conditions. Nanomaterials produced by the electrogenic bacteria can offer an innovative bottom‐up biosynthetic approach to synergize bacterial electron transfer and create an effective coupling at the cell–electrode interface. Furthermore, electrogenic bacteria can revolutionize the field of bioelectronics by effectively interfacing electronics with microbes through extracellular electron transfer. Here, these new directions for the electrogenic bacteria and their recent integration with micro‐ and nanosystems are comprehensively discussed with specific attention toward distinct applications in the field of powering, sensing, and synthesizing. Furthermore, challenges of individual applications and strategies toward potential solutions are provided to offer valuable guidelines for practical implementation. Finally, the perspective and view on how the use of electrogenic bacteria can hold immeasurable promise for the development of future electronics and their applications are presented. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10446022
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 18
- Issue:
- 18
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Cable bacteria that are capable of transporting electrons on centimeter scales have been found in a variety of sediment types, where their activity can strongly influence diagenetic reactions and elemental cycling. In this study, the patterns of spatial and temporal colonization of surficial sediment by cable bacteria were revealed in two-dimensions by planar pH and H2S optical sensors for the first time. The characteristic sediment surface pH maximum zones begin to develop from isolated micro-regions and spread horizontally within 5 days, with lateral spreading rates from 0.3 to ~ 1.2 cm day−1. Electrogenic anodic zones in the anoxic sediments are characterized by low pH, and the coupled pH minima also expand with time. H2S heterogeneities in accordance with electrogenic colonization are also observed. Cable bacteria cell abundance in oxic surface sediment (0–0.25 cm) kept almost constant during the colonization period; however, subsurface cell abundance apparently increased as electrogenic activity expanded across the entire surface. Changes in cell abundance are consistent with filament coiling and growth in the anodic zone (i.e., cathodic snorkels). The spreading mechanism for the sediment pH–H2S fingerprints and the cable bacteria abundance dynamics suggest that once favorable microenvironments are established, filamentous cable bacteria aggregate or locally activate electrogenic metabolism. Different development dynamics in otherwise similar sediment suggests that the accessibility of reductant (e.g., dissolved phase sulfide) is critical in controlling the growth of cable bacteria.more » « less
- 
            Extracellular electron transfer explainedArpita Bose, PhD from Washington University in St. Louis, guides us through host-associated impacts and biotechnological applications of extracellular electron transfer in electrochemically active bacteria. Electron flow and oxidative and reductive reactions, referred to as “redox reactions,” collectively impact the outcomes of biochemical pathways essential for cell growth, energy conservation, and stress response throughout various organisms. An example of these organisms is electrochemically active bacteria (EAB), which can link internal redox reactions with external electron acceptors or donors via a process known as extracellular electron transfer (EET).more » « less
- 
            Abstract The tuneability and control of quantum nanostructures in two-dimensional materials offer promising perspectives for their use in future electronics. It is hence necessary to analyze quantum transport in such nanostructures. Material properties such as a complex dispersion, topology, and charge carriers with multiple degrees of freedom, are appealing for novel device functionalities but complicate their theoretical description. Here, we study quantum tunnelling transport across a few-electron bilayer graphene quantum dot. We demonstrate how to uniquely identify single- and two-electron dot states’ orbital, spin, and valley composition from differential conductance in a finite magnetic field. Furthermore, we show that the transport features manifest splittings in the dot’s spin and valley multiplets induced by interactions and magnetic field (the latter splittings being a consequence of bilayer graphene’s Berry curvature). Our results elucidate spin- and valley-dependent tunnelling mechanisms and will help to utilize bilayer graphene quantum dots, e.g., as spin and valley qubits.more » « less
- 
            Abstract Transient electronics, which can operate only for short‐lived applications and then be eco‐friendly disintegrated, create opportunities in environmental sensing, healthcare, and hardware security. Paper‐based electronics, or papertronics, recently have rapidly advanced the physically transient device platform because paper as a foundation offers an environmentally sustainable and cost‐effective option for those increasingly pervasive and fast‐updated single‐use applications. Paper‐based power supplies are indispensable to realize a fully papertronic paradigm and are a critical enabler of environmentally benign power solutions. Microbial fuel cells (MFCs) hold great potential as power sources for such green papertronic applications. This work reports the design, operation, and optimization of a high‐power papertronic MFC by biosynthesizing microbe‐mediated tin oxide nanoparticles (SnO2NPs) on dormant Bacillus subtilis endospores. They form an electrical conduit that improves electron harvesting during the spore germination and power generation. The MFC is packaged in a sub‐microporous alginate to minimize the potential risk of bacteria leakage. Upon the introduction of water, the paper‐based MFC generates a significantly enhanced power density of 140 µW cm−2, which is more than two orders of magnitude greater than their previously reported counterparts. Six MFCs connected in series generate more than sufficient power to run an on‐chip, light‐emitting diode.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
