Zinc oxide nanoparticles (ZnO NPs) are versatile and promising, with diverse applications in environmental remediation, nanomedicine, cancer treatment, and drug delivery. In this study, ZnO NPs were synthesized utilizing extracts derived from
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Acacia catechu, Artemisia vulgaris , andCynodon dactylon . The synthesized ZnO NPs showed an Ultraviolet–visible spectrum at 370 nm, and X-ray diffraction analysis indicated the hexagonal wurtzite framework with the average crystallite size of 15.07 nm, 16.98 nm, and 18.97 nm for nanoparticles synthesized utilizingA. catechu, A. vulgaris, andC. dactylon respectively. Scanning electron microscopy (SEM) demonstrated spherical surface morphology with average diameters of 18.5 nm, 17.82 nm, and 17.83 nm for ZnO NPs prepared fromA. catechu, A. vulgaris , andC. dactylon, respectively. Furthermore, ZnO NPs tested againstStaphylococcus aureus, Kocuria rhizophila, Klebsiella pneumonia, andShigella sonnei demonstrated a zone of inhibition of 8 to 14 mm. The cell viability and cytotoxicity effects of ZnO NPs were studied on NIH-3T3 mouse fibroblast cells treated with different concentrations (5 μg/mL, 10 μg/mL, and 50 μg/mL). The results showed biocompatibility of all samples, except with higher doses causing cell death. In conclusion, the ZnO NPs synthesized through plant-mediated technique showed promise for potential utilization in various biomedical applications in the future.Free, publicly-accessible full text available March 1, 2025 -
Abstract Engineered composite scaffolds composed of natural and synthetic polymers exhibit cooperation at the molecular level that closely mimics tissue extracellular matrix's (ECM) physical and chemical characteristics. However, due to the lack of smooth intermix capability of natural and synthetic materials in the solution phase, bio‐inspired composite material development has been quite challenged. In this research, we introduced new bio‐inspired material blending techniques to fabricate nanofibrous composite scaffolds of chitin nanofibrils (CNF), a natural hydrophilic biomaterial and poly (ɛ‐caprolactone) (PCL), a synthetic hydrophobic‐biopolymer. CNF was first prepared by acid hydrolysis technique and dispersed in trifluoroethanol (TFE); and second, PCL was dissolved in TFE and mixed with the chitin solution in different ratios. Electrospinning and spin‐coating technology were used to form nanofibrous mesh and films, respectively. Physicochemical properties, such as mechanical strength, and cellular compatibility, and structural parameters, such as morphology, and crystallinity, were determined. Toward the potential use of this composite materials as a support membrane in blood–brain barrier application (BBB), human umbilical vein endothelial cells (HUVECs) were cultured, and transendothelial electrical resistance (TEER) was measured. Experimental results of the composite materials with PCL/CNF ratios from 100/00 to 25/75 showed good uniformity in fiber morphology and suitable mechanical properties. They retained the excellent ECM‐like properties that mimic synthetic‐bio‐interface that has potential application in biomedical fields, particularly tissue engineering and BBB applications.
-
Electrospun fibrous scaffolds made from polymers such as polycaprolactone (PCL) have been used in drug delivery and tissue engineering for their viscoelasticity, biocompatibility, biodegradability, and tunability. Hydrophobicity and the prolonged degradation of PCL causes inhibition of the natural tissue-remodeling processes. Poliglecaprone (PGC), which consists of PCL and Poly (glycolic acid) (PGA), has better mechanical properties and a shorter degradation time compared to PCL. A blend between PCL and PGC called PPG can give enhanced shared properties for biomedical applications. In this study, we fabricated a blend of PCL and PGC nanofibrous scaffold (PPG) at different ratios of PGC utilizing electrospinning. We studied the physicochemical and biological properties, such as morphology, crystallinity, surface wettability, degradation, surface functionalization, and cellular compatibility. All PPG scaffolds exhibited good uniformity in fiber morphology and improved mechanical properties. The surface wettability and degradation studies confirmed that increasing PGC in the PPG composites increased hydrophilicity and scaffold degradation respectively. Cell viability and cytotoxicity results showed that the scaffold with PGC was more viable and less toxic than the PCL-only scaffolds. PPG fibers were successfully coated with polydopamine (PDA) and collagen to improve degradation, biocompatibility, and bioactivity. The nanofibrous scaffolds synthesized in this study can be utilized for tissue engineering applications such as for regeneration of human articular cartilage regeneration and soft bones.
-
An engineered 3D architectural network of the biopolymeric hydrogel can mimic the native cell environment that promotes cell infiltration and growth. Among several bio-fabricated hydrogel structures, core–shell microcapsules inherit the potential of cell encapsulation to ensure the growth and transport of cells and cell metabolites. Herein, a co-axial electrostatic encapsulation strategy is used to create and encapsulate the cells into chitin nanofibrils integrated alginate hydrogel microcapsules. Three parameters that are critical in the electrostatic encapsulation process, hydrogel composition, flow rate, and voltage were optimized. The physicochemical characterization including structure, size, and stability of the core–shell microcapsules was analyzed by scanning electron microscope (SEM), FTIR, and mechanical tests. The cellular responses of the core–shell microcapsules were evaluated through in vitro cell studies by encapsulating NIH/3T3 fibroblast cells. Notably, the bioactive microcapsule showed that the cell viability was found excellent for more than 2 weeks. Thus, the results of this core–shell microcapsule showed a promising approach to creating 3D hydrogel networks suitable for different biomedical applications such as in vitro tissue models for toxicity studies, wound healing, and tissue repair.
-
Zinc oxide nanoparticles (ZnO-NPs) have piqued the curiosity of researchers all over the world due to their extensive biological activity. They are less toxic and biodegradable with the capacity to greatly boost pharmacophore bioactivity. ZnO-NPs are the most extensively used metal oxide nanoparticles in electronic and optoelectronics because of their distinctive optical and chemical properties which can be readily modified by altering the morphology and the wide bandgap. The biosynthesis of nanoparticles using extracts of therapeutic plants, fungi, bacteria, algae, etc., improves their stability and biocompatibility in many biological settings, and its biofabrication alters its physiochemical behavior, contributing to biological potency. As such, ZnO-NPs can be used as an effective nanocarrier for conventional drugs due to their cost-effectiveness and benefits of being biodegradable and biocompatible. This article covers a comprehensive review of different synthesis approaches of ZnO-NPs including physical, chemical, biochemical, and green synthesis techniques, and also emphasizes their biopotency through antibacterial, antifungal, anticancer, anti-inflammatory, antidiabetic, antioxidant, antiviral, wound healing, and cardioprotective activity. Green synthesis from plants, bacteria, and fungus is given special attention, with a particular emphasis on extraction techniques, precursors used for the synthesis and reaction conditions, characterization techniques, and surface morphology of the particles.more » « less