skip to main content


Search for: All records

Award ID contains: 2101107

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many robotic tasks rely on physical interactions with the task environment. Sensing when and where links make physical contacts can be crucial in several applications, including but not limited to grasping, locomotion, collaborative robotics and navigation. While sensorizing robot end effectors with intrinsic tactile devices is a logical approach, current and accessible options are often expensive or require invasive modifications. This paper presents a prototype method of both sensing and localizing contacts along a rigid link that can be readily incorporated into existing machines. The mechanism is lightweight and low-cost, and functions by actively providing an oscillatory mechanical actuation signal to a rigid link, whose mechanical response is measured with an inertial device and is used to localize touch at one of five designated contact points. Classification is performed with supervised methods using transient behavior and spectral features. Evaluation is conducted with five-fold cross validation, and preliminary results indicate promising performance in localizing the point of contact on the rigid link with accuracy of over 97%. 
    more » « less
  2. This paper presents an approach to enhanced endoscopic tool segmentation combining separate pathways utilizing input images in two different coordinate representations. The proposed method examines U-Net convolutional neural networks with input endoscopic images represented via (1) the original rectangular coordinate format alongside (2) a morphological polar coordinate transformation. To maximize information and the breadth of the endoscope frustrum, imaging sensors are oftentimes larger than the image circle. This results in unused border regions. Ideally, the region of interest is proximal to the image center. The above two observations formed the basis for the morphological polar transformation pathway as an augmentation to typical rectangular input image representations. Results indicate that neither of the two investigated coordinate representations consistently yielded better segmentation performance as compared to the other. Improved segmentation can be achieved with a hybrid approach that carefully selects which of the two pathways to be used for individual input images. Towards that end, two binary classifiers were trained to identify, given an input endoscopic image, which of the two coordinate representation segmentation pathways (rectangular or polar), would result in better segmentation performance. Results are promising and suggest marked improvements using a hybrid pathway selection approach compared to either alone. The experiment used to evaluate the proposed hybrid method utilized a dataset consisting of 8360 endoscopic images from real surgery and evaluated segmentation performance with Dice coefficient and Intersection over Union. The results suggest that on-the-fly polar transformation for tool segmentation is useful when paired with the proposed hybrid tool-segmentation approach. 
    more » « less
  3. Accurate semantic image segmentation from medical imaging can enable intelligent vision-based assistance in robot-assisted minimally invasive surgery. The human body and surgical procedures are highly dynamic. While machine-vision presents a promising approach, sufficiently large training image sets for robust performance are either costly or unavailable. This work examines three novel generative adversarial network (GAN) methods of providing usable synthetic tool images using only surgical background images and a few real tool images. The best of these three novel approaches generates realistic tool textures while preserving local background content by incorporating both a style preservation and a content loss component into the proposed multi-level loss function. The approach is quantitatively evaluated, and results suggest that the synthetically generated training tool images enhance UNet tool segmentation performance. More specifically, with a random set of 100 cadaver and live endoscopic images from the University of Washington Sinus Dataset, the UNet trained with synthetically generated images using the presented method resulted in 35.7% and 30.6% improvement over using purely real images in mean Dice coefficient and Intersection over Union scores, respectively. This study is promising towards the use of more widely available and routine screening endoscopy to preoperatively generate synthetic training tool images for intraoperative UNet tool segmentation. 
    more » « less
  4. While robot-assisted minimally invasive surgery (RMIS) procedures afford a variety of benefits over open surgery and manual laparoscopic operations (including increased tool dexterity, reduced patient pain, incision size, trauma and recovery time, and lower infection rates [ 1 ], lack of spatial awareness remains an issue. Typical laparoscopic imaging can lack sufficient depth cues and haptic feedback, if provided, rarely reflects realistic tissue–tool interactions. This work is part of a larger ongoing research effort to reconstruct 3D surfaces using multiple viewpoints in RMIS to increase visual perception. The manual placement and adjustment of multicamera systems in RMIS are nonideal and prone to error [ 2 ], and other autonomous approaches focus on tool tracking and do not consider reconstruction of the surgical scene [ 3 , 4 , 5 ]. The group’s previous work investigated a novel, context-aware autonomous camera positioning method [ 6 ], which incorporated both tool location and scene coverage for multiple camera viewpoint adjustments. In this paper, the authors expand upon this prior work by implementing a streamlined deep reinforcement learning approach between optimal viewpoints calculated using the prior method [ 6 ] which encourages discovery of otherwise unobserved and additional camera viewpoints. Combining the framework and robustness of the previous work with the efficiency and additional viewpoints of the augmentations presented here results in improved performance and scene coverage promising towards real-time implementation. 
    more » « less
  5. Laparoscopic surgery presents practical benefits over traditional open surgery, including reduced risk of infection, discomfort and recovery time for patients. Introducing robot systems into surgical tasks provides additional enhancements, including improved precision, remote operation, and an intelligent software layer capable of filtering aberrant motion and scaling surgical maneuvers. However, the software interface in telesurgery also lends itself to potential adversarial cyber attacks. Such attacks can negatively effect both surgeon motion commands and sensory information relayed to the operator. To combat cyber attacks on the latter, one method to enhance surgeon feedback through multiple sensory pathways is to incorporate reliable, complementary forms of information across different sensory modes. Built-in partial redundancies or inferences between perceptual channels, or perception complementarities, can be used both to detect and recover from compromised operator feedback. In surgery, haptic sensations are extremely useful for surgeons to prevent undue and unwanted tissue damage from excessive tool-tissue force. Direct force sensing is not yet deployable due to sterilization requirements of the operating room. Instead, combinations of other sensing methods may be relied upon, such as noncontact model-based force estimation. This paper presents the design of a surgical simulator software that can be used for vision-based non-contact force sensing to inform the perception complementarity of vision and force feedback for telesurgery. A brief user study is conducted to verify the efficacy of graphical force feedback from vision-based force estimation, and suggests that vision may effectively complement direct force sensing. 
    more » « less
  6. Haptic feedback can render real-time force interactions with computer simulated objects. In several telerobotic applications, it is desired that a haptic simulation reflects a physical task space or interaction accurately. This is particularly true when excessive applied force can result in disastrous consequences, as with the case of robot-assisted minimally invasive surgery (RMIS) and tissue damage. Since force cannot be directly measured in RMIS, non-contact methods are desired. A promising direction of non-contact force estimation involves the primary use of vision sensors to estimate deformation. However, the required fidelity of non-contact force rendering of deformable interaction to maintain surgical operator performance is not well established. This work attempts to empirically evaluate the degree to which haptic feedback may deviate from ground truth yet result in acceptable teleoperated performance in a simulated RMIS-based palpation task. A preliminary user-study is conducted to verify the utility of the simulation platform, and the results of this work have implications in haptic feedback for RMIS and inform guidelines for vision-based tool-tissue force estimation. An adaptive thresholding method is used to collect the minimum and maximum tolerable errors in force orientation and magnitude of presented haptic feedback to maintain sufficient performance. 
    more » « less