skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2101861

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We consider a conjecture that identifies two types of base point free divisors on$$\overline {\text {M}}_{0,n}$$ M ¯ 0 , n . The first arises from Gromov-Witten theory of a Grassmannian. The second comes from first Chern classes of vector bundles associated with simple Lie algebras in type A. Here we reduce this conjecture on$$\overline {\text {M}}_{0,n}$$ M ¯ 0 , n to the same statement forn= 4. A reinterpretation leads to a proof of the conjecture on$$\overline {\text {M}}_{0,n}$$ M ¯ 0 , n for a large class, and we give sufficient conditions for the non-vanishing of these divisors. 
    more » « less
  2. A homology class [Formula: see text] of a complex flag variety [Formula: see text] is called a line degree if the moduli space [Formula: see text] of 0-pointed stable maps to X of degree d is also a flag variety [Formula: see text]. We prove a quantum equals classical formula stating that any n-pointed (equivariant, [Formula: see text]-theoretic, genus zero) Gromov–Witten invariant of line degree on X is equal to a classical intersection number computed on the flag variety [Formula: see text]. We also prove an n-pointed analogue of the Peterson comparison formula stating that these invariants coincide with Gromov–Witten invariants of the variety of complete flags [Formula: see text]. Our formulas make it straightforward to compute the big quantum [Formula: see text]-theory ring [Formula: see text] modulo the ideal [Formula: see text] generated by degrees d larger than line degrees. 
    more » « less
    Free, publicly-accessible full text available November 30, 2025